AN OVERVIEW OF GREEN HYDROGEN PRODUCTION SYSTEM THROUGH LOW TEMPERATURE WATER ELECTROLYSIS USING SOLAR ENERGY

被引:0
|
作者
Arbye, S. [1 ]
Wijaya, Fransisco D. [1 ]
Budiman, Arief [2 ]
机构
[1] Univ Gadjah Mada, Dept Elect Engn & Informat Technol, Yogyakarta, Indonesia
[2] Univ Gadjah Mada, Dept Chem Engn, Yogyakarta, Indonesia
来源
THERMAL SCIENCE | 2024年 / 28卷 / 5A期
关键词
low temperature water electrolysis; green hydrogen; solar energy; alkaline water electrolysis; proton exchange membrane; anion exchange membrane;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
Climate change and the increasing demand for energy become major issues in public discussions today. The Paris Agreement is one of the results of such public discussions that focuses on achieving the 2050 net zero emission target. Many energy agencies have created scenarios to achieve this target. In this regard, green hydrogen is expected to have a significant role in energy transition plan. For this reason, in recent years, research related to green hydrogen production using the water electrolysis method continues to develop. The paper aimed primarily to conduct an overview of alternative technologies that can be used in producing green hydrogen with the solar energy based low temperature water electrolysis method. Secondarily, it would present information about several solar energy-based electrolysis project plans and a summary of challenges and opportunities in the development of solar energy based low temperature water electrolyzers in the future. Furthermore, to achieve commercially viable green hydrogen production, it is important to find new ideas, potential solutions, and constructive recommendations as soon as possible for further development research. This paper expectedly would be able to help initiate the development of green hydrogen production research through water electrolysis technology that is efficient, cost effective economically, and environmentally friendly.
引用
收藏
页码:3657 / 3674
页数:18
相关论文
共 50 条
  • [1] AN OVERVIEW OF GREEN HYDROGEN PRODUCTION SYSTEM THROUGH LOW TEMPERATURE WATER ELECTROLYSIS USING SOLAR ENERGY
    Arbye, S.
    WIJAYA, Fransisco D.
    BUDIMAN, Arief
    Thermal Science, 2024, 28 (05): : 3657 - 3674
  • [2] An overview of water electrolysis technologies for green hydrogen production
    Kumar, S. Shiva
    Lim, Hankwon
    ENERGY REPORTS, 2022, 8 : 13793 - 13813
  • [3] Large-scale green hydrogen production via alkaline water electrolysis using solar and wind energy
    Hassan, Qusay
    Sameen, Aws Zuhair
    Salman, Hayder M.
    Jaszczur, Marek
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (88) : 34299 - 34315
  • [4] Hydrogen production by a low-cost electrolyzer developed through the combination of alkaline water electrolysis and solar energy use
    de Fatima Palhares, Dayana D'Arc
    Martins Vieira, Luiz Gustavo
    Ribeiro Damasceno, Joao Jorge
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (09) : 4265 - 4275
  • [5] The scheduling of alkaline water electrolysis for hydrogen production using hybrid energy sources
    Yang, Yu
    Torre, Brenda De La
    Stewart, Katherine
    Lair, Laurianne
    Phan, Nguyen L.
    Das, Rupak
    Gonzalez, Demar
    Lo, Roger C.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 257
  • [6] Advances in green hydrogen production through alkaline water electrolysis: A comprehensive review
    Dash, Snehasish
    Singh, K. Arjun
    Jose, S.
    Wilson, D. Vincent Herald
    Elangovan, D.
    Surapraraju, Subbarama Kousik
    Natarajan, Sendhil Kumar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 83 : 614 - 629
  • [7] The potential of hydrogen production from high and low-temperature electrolysis methods using solar and nuclear energy sources: the transition to a hydrogen economy in Brazil
    Nadaleti, Willian Cezar
    Souza, Eduarda Gomes de
    Souza, Samuel Nelson Melegari de
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (82) : 34727 - 34738
  • [8] Green hydrogen production potential for Turkey with solar energy
    Karayel, Kubilay
    Javani, Nader
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (45) : 19354 - 19364
  • [9] Green hydrogen production potential of Canada with solar energy
    Karayel, G. Kubilay
    Dincer, Ibrahim
    RENEWABLE ENERGY, 2024, 221
  • [10] Solar hydrogen production via alkaline water electrolysis
    Kovac, Ankica
    Marcius, Doria
    Budin, Luka
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (20) : 9841 - 9848