Bayesian Forward-Inverse Transfer for Multiobjective Optimization

被引:0
作者
Wei, Tingyang [1 ]
Liu, Jiao [1 ]
Gupta, Abhishek [2 ]
Tan, Puay Siew [3 ]
Ong, Yew-Soon [1 ,4 ]
机构
[1] Nanyang Technol Univ, Coll Comp & Data Sci, Singapore, Singapore
[2] Indian Inst Technol, Sch Mech Sci, Ponda, Goa, India
[3] Agcy Sci Res & Technol, Singapore Inst Mfg Technol SIMTech, Singapore, Singapore
[4] Agcy Sci Res & Technol, Ctr Frontier AI Res CFAR, Singapore, Singapore
来源
PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024 | 2024年 / 15151卷
基金
新加坡国家研究基金会;
关键词
Evolutionary algorithms; Bayesian optimization; multiobjective optimization; inverse models; ALGORITHM;
D O I
10.1007/978-3-031-70085-9_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an evolutionary optimizer incorporating knowledge transfer through forward and inverse surrogate models for solving multiobjective problems, within a stringent computational budget. Forward knowledge transfer is employed to fully exploit solution-evaluation datasets from related tasks by building Bayesian forward multitask surrogate models that map points from decision to objective space. Inverse knowledge transfer via Bayesian inverse multitask models makes possible the creation of high-quality solution populations in decision space by mapping back from preferred points in objective space. In contrast to prior work, the proposed method can improve the overall convergence performance to multiple Pareto sets by fully exploiting information available for diverse multiobjective problems. Empirical studies conducted on benchmark and real-world multitask multiobjective optimization problems demonstrate the faster convergence rate and enhanced inverse modeling accuracy of our algorithm compared to state-of-the-art algorithms.
引用
收藏
页码:135 / 152
页数:18
相关论文
共 50 条
  • [41] Multiobjective optimization for manpower assignment in consulting engineering firms
    Yang, I-Tung
    Chou, Jui-Sheng
    APPLIED SOFT COMPUTING, 2011, 11 (01) : 1183 - 1190
  • [42] Inverse design of composite metal oxide optical materials based on deep transfer learning and global optimization
    Dong, Rongzhi
    Dan, Yabo
    Li, Xiang
    Hu, Jianjun
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [43] Constrained Bayesian Optimization of a Linear Feed-Forward Controller
    Rowold, Matthias
    Wischnewski, Alexander
    Lohmann, Boris
    IFAC PAPERSONLINE, 2019, 52 (29): : 1 - 6
  • [44] Forward Inverse Relaxation Model Incorporating Movement Duration Optimization
    Takeda, Misaki
    Nambu, Isao
    Wada, Yasuhiro
    BRAIN SCIENCES, 2021, 11 (02) : 1 - 18
  • [45] ExTrEMO: Transfer Evolutionary Multiobjective Optimization With Proof of Faster Convergence
    Liu, Jiao
    Gupta, Abhishek
    Ooi, Chinchun
    Ong, Yew-Soon
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2025, 29 (01) : 102 - 116
  • [46] Dynamic Multiobjective Evolutionary Optimization via Knowledge Transfer and Maintenance
    Lin, Qiuzhen
    Ye, Yulong
    Ma, Lijia
    Jiang, Min
    Tan, Kay Chen
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (02): : 936 - 949
  • [47] A Knowledge Guided Transfer Strategy for Evolutionary Dynamic Multiobjective Optimization
    Guo, Yinan
    Chen, Guoyu
    Jiang, Min
    Gong, Dunwei
    Liang, Jing
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (06) : 1750 - 1764
  • [48] Multiobjective optimization of a steering linkage
    Sleesongsom, S.
    Bureerat, S.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2016, 30 (08) : 3681 - 3691
  • [49] On the Performance Metrics of Multiobjective Optimization
    Cheng, Shi
    Shi, Yuhui
    Qin, Quande
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 504 - 512
  • [50] DIRECT MULTISEARCH FOR MULTIOBJECTIVE OPTIMIZATION
    Custodio, A. L.
    Madeira, J. F. A.
    Vaz, A. I. F.
    Vicente, L. N.
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (03) : 1109 - 1140