Bayesian Forward-Inverse Transfer for Multiobjective Optimization

被引:0
作者
Wei, Tingyang [1 ]
Liu, Jiao [1 ]
Gupta, Abhishek [2 ]
Tan, Puay Siew [3 ]
Ong, Yew-Soon [1 ,4 ]
机构
[1] Nanyang Technol Univ, Coll Comp & Data Sci, Singapore, Singapore
[2] Indian Inst Technol, Sch Mech Sci, Ponda, Goa, India
[3] Agcy Sci Res & Technol, Singapore Inst Mfg Technol SIMTech, Singapore, Singapore
[4] Agcy Sci Res & Technol, Ctr Frontier AI Res CFAR, Singapore, Singapore
来源
PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024 | 2024年 / 15151卷
基金
新加坡国家研究基金会;
关键词
Evolutionary algorithms; Bayesian optimization; multiobjective optimization; inverse models; ALGORITHM;
D O I
10.1007/978-3-031-70085-9_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an evolutionary optimizer incorporating knowledge transfer through forward and inverse surrogate models for solving multiobjective problems, within a stringent computational budget. Forward knowledge transfer is employed to fully exploit solution-evaluation datasets from related tasks by building Bayesian forward multitask surrogate models that map points from decision to objective space. Inverse knowledge transfer via Bayesian inverse multitask models makes possible the creation of high-quality solution populations in decision space by mapping back from preferred points in objective space. In contrast to prior work, the proposed method can improve the overall convergence performance to multiple Pareto sets by fully exploiting information available for diverse multiobjective problems. Empirical studies conducted on benchmark and real-world multitask multiobjective optimization problems demonstrate the faster convergence rate and enhanced inverse modeling accuracy of our algorithm compared to state-of-the-art algorithms.
引用
收藏
页码:135 / 152
页数:18
相关论文
共 50 条
  • [31] An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization
    Lin, Jiabin
    Liu, Hai-Lin
    Tan, Kay Chen
    Gu, Fangqing
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (06) : 3238 - 3248
  • [32] Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design
    Swaminathan, Madhavan
    Bhatti, Osama Waqar
    Guo, Yiliang
    Huang, Eric
    Akinwande, Oluwaseyi
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (11) : 4620 - 4634
  • [33] Inverse analysis for geomaterial parameter identification using Pareto multiobjective optimization
    Jiang, Qinghui
    Sun, Yang
    Yi, Bing
    Li, Tiansheng
    Xiong, Feng
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2018, 42 (14) : 1698 - 1718
  • [34] Multiobjective Optimization of Inverse Problems Using a Vector Cross Entropy Method
    Ho, S. L.
    Yang, Shiyou
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 247 - 250
  • [35] BAYESIAN-APPROACH TO GLOBAL OPTIMIZATION AND APPLICATION TO MULTIOBJECTIVE AND CONSTRAINED PROBLEMS
    MOCKUS, JB
    MOCKUS, LJ
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 70 (01) : 157 - 172
  • [36] Multiple source transfer learning for dynamic multiobjective optimization
    Ye, Yulong
    Lin, Qiuzhen
    Ma, Lijia
    Wong, Ka-Chun
    Gong, Maoguo
    Coello, Carlos A. Coello
    INFORMATION SCIENCES, 2022, 607 : 739 - 757
  • [37] Inverse design of spinodoid structures using Bayesian optimization
    Rassloff, Alexander
    Seibert, Paul
    Kalina, Karl A.
    Kaestner, Markus
    COMPUTATIONAL MECHANICS, 2025,
  • [38] Bayesian inverse problem and optimization with iterative spatial resampling
    Mariethoz, Gregoire
    Renard, Philippe
    Caers, Jef
    WATER RESOURCES RESEARCH, 2010, 46
  • [39] Towards Efficient Multiobjective Optimization: Multiobjective Statistical Criterions
    Couckuyt, Ivo
    Deschrijver, Dirk
    Dhaene, Tom
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [40] Inverse problem based multiobjective sunflower optimization for structural health monitoring of three-dimensional trusses
    Magacho, Evandro Gabriel
    Jorge, Ariosto Bretanha
    Gomes, Guilherme Ferreira
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (01) : 247 - 267