Bayesian Forward-Inverse Transfer for Multiobjective Optimization

被引:0
作者
Wei, Tingyang [1 ]
Liu, Jiao [1 ]
Gupta, Abhishek [2 ]
Tan, Puay Siew [3 ]
Ong, Yew-Soon [1 ,4 ]
机构
[1] Nanyang Technol Univ, Coll Comp & Data Sci, Singapore, Singapore
[2] Indian Inst Technol, Sch Mech Sci, Ponda, Goa, India
[3] Agcy Sci Res & Technol, Singapore Inst Mfg Technol SIMTech, Singapore, Singapore
[4] Agcy Sci Res & Technol, Ctr Frontier AI Res CFAR, Singapore, Singapore
来源
PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024 | 2024年 / 15151卷
基金
新加坡国家研究基金会;
关键词
Evolutionary algorithms; Bayesian optimization; multiobjective optimization; inverse models; ALGORITHM;
D O I
10.1007/978-3-031-70085-9_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an evolutionary optimizer incorporating knowledge transfer through forward and inverse surrogate models for solving multiobjective problems, within a stringent computational budget. Forward knowledge transfer is employed to fully exploit solution-evaluation datasets from related tasks by building Bayesian forward multitask surrogate models that map points from decision to objective space. Inverse knowledge transfer via Bayesian inverse multitask models makes possible the creation of high-quality solution populations in decision space by mapping back from preferred points in objective space. In contrast to prior work, the proposed method can improve the overall convergence performance to multiple Pareto sets by fully exploiting information available for diverse multiobjective problems. Empirical studies conducted on benchmark and real-world multitask multiobjective optimization problems demonstrate the faster convergence rate and enhanced inverse modeling accuracy of our algorithm compared to state-of-the-art algorithms.
引用
收藏
页码:135 / 152
页数:18
相关论文
共 50 条
  • [21] Inverse multiobjective optimization: Inferring decision criteria from data
    Gebken, Bennet
    Peitz, Sebastian
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 80 (01) : 3 - 29
  • [22] Dual transfer learning with generative filtering model for multiobjective multitasking optimization
    Dang, Qianlong
    Gao, Weifeng
    Gong, Maoguo
    MEMETIC COMPUTING, 2023, 15 (01) : 3 - 29
  • [23] Multiobjective Bayesian optimization and joint inversion for active sensor fusion
    Haan, Sebastian
    Ramos, Fabio
    Muller, R. Dietmar
    GEOPHYSICS, 2021, 86 (01) : ID1 - ID17
  • [24] A New Prediction Approach for Dynamic Multiobjective Optimization
    Ahrari, Ali
    Elsayed, Saber
    Sarker, Ruhul
    Essam, Daryl
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 2268 - 2275
  • [25] A Survey on the Hypervolume Indicator in Evolutionary Multiobjective Optimization
    Shang, Ke
    Ishibuchi, Hisao
    He, Linjun
    Pang, Lie Meng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (01) : 1 - 20
  • [26] Multiobjective Optimization for Forward and Reverse Logistics Network Design in Rural Areas
    Zhuang, Yufeng
    Zhao, Hang
    Zhang, Chi
    2016 IEEE 13TH INTERNATIONAL CONFERENCE ON E-BUSINESS ENGINEERING (ICEBE), 2016, : 316 - 321
  • [27] A Multiobjective Multitask Optimization Algorithm Using Transfer Rank
    Chen, Hongyan
    Liu, Hai-Lin
    Gu, Fangqing
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (02) : 237 - 250
  • [28] LoCoMOBO: A Local Constrained Multiobjective Bayesian Optimization for Analog Circuit Sizing
    Touloupas, Konstantinos
    Sotiriadis, Paul P.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (09) : 2780 - 2793
  • [29] Constrained Multiobjective Optimization via Multitasking and Knowledge Transfer
    Ming, Fei
    Gong, Wenyin
    Wang, Ling
    Gao, Liang
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (01) : 77 - 89
  • [30] Multitasking multiobjective optimization based on transfer component analysis
    Hu, Ziyu
    Li, Yulin
    Sun, Hao
    Ma, Xuemin
    INFORMATION SCIENCES, 2022, 605 : 182 - 201