Bayesian Forward-Inverse Transfer for Multiobjective Optimization

被引:0
作者
Wei, Tingyang [1 ]
Liu, Jiao [1 ]
Gupta, Abhishek [2 ]
Tan, Puay Siew [3 ]
Ong, Yew-Soon [1 ,4 ]
机构
[1] Nanyang Technol Univ, Coll Comp & Data Sci, Singapore, Singapore
[2] Indian Inst Technol, Sch Mech Sci, Ponda, Goa, India
[3] Agcy Sci Res & Technol, Singapore Inst Mfg Technol SIMTech, Singapore, Singapore
[4] Agcy Sci Res & Technol, Ctr Frontier AI Res CFAR, Singapore, Singapore
来源
PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024 | 2024年 / 15151卷
基金
新加坡国家研究基金会;
关键词
Evolutionary algorithms; Bayesian optimization; multiobjective optimization; inverse models; ALGORITHM;
D O I
10.1007/978-3-031-70085-9_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an evolutionary optimizer incorporating knowledge transfer through forward and inverse surrogate models for solving multiobjective problems, within a stringent computational budget. Forward knowledge transfer is employed to fully exploit solution-evaluation datasets from related tasks by building Bayesian forward multitask surrogate models that map points from decision to objective space. Inverse knowledge transfer via Bayesian inverse multitask models makes possible the creation of high-quality solution populations in decision space by mapping back from preferred points in objective space. In contrast to prior work, the proposed method can improve the overall convergence performance to multiple Pareto sets by fully exploiting information available for diverse multiobjective problems. Empirical studies conducted on benchmark and real-world multitask multiobjective optimization problems demonstrate the faster convergence rate and enhanced inverse modeling accuracy of our algorithm compared to state-of-the-art algorithms.
引用
收藏
页码:135 / 152
页数:18
相关论文
共 50 条
  • [1] Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization
    Liu, Jiao
    Gupta, Abhishek
    Ong, Yew-Soon
    ACM Transactions on Evolutionary Learning and Optimization, 2024, 4 (04):
  • [2] Multiobjective Bayesian Optimization for Aeroengine Using Multiple Information Sources
    Chen, Ran
    Yu, Jingjiang
    Zhao, Zhengen
    Li, Yuzhe
    Fu, Jun
    Chai, Tianyou
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (11) : 11343 - 11352
  • [3] Inverse Multiobjective Optimization by Generative Model Prompting
    Liu, Jiao
    Gupta, Abhishek
    Ong, Yew-Soon
    Tant, Puay Siew
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 737 - 740
  • [4] Towards Efficient Multiobjective Hyperparameter Optimization: A Multiobjective Multi-fidelity Bayesian Optimization and Hyperband Algorithm
    Chen, Zefeng
    Zhou, Yuren
    Huang, Zhengxin
    Xia, Xiaoyun
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 160 - 174
  • [5] Scalarizing Functions in Bayesian Multiobjective Optimization
    Chugh, Tinkle
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [6] Boosting scalability for large-scale multiobjective optimization via transfer weights
    Hong, Haokai
    Jiang, Min
    Yen, Gary G.
    INFORMATION SCIENCES, 2024, 670
  • [7] Multisource Selective Transfer Framework in Multiobjective Optimization Problems
    Zhang, Jun
    Zhou, Weien
    Chen, Xianqi
    Yao, Wen
    Cao, Lu
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (03) : 424 - 438
  • [8] Bayesian Preference Elicitation for Multiobjective Engineering Design Optimization
    Lepird, John R.
    Owen, Michael P.
    Kochenderfer, Mykel J.
    JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2015, 12 (10): : 634 - 645
  • [9] Dynamic multiobjective optimization driven by inverse reinforcement learning
    Zou, Fei
    Yen, Gary G.
    Zhao, Chen
    INFORMATION SCIENCES, 2021, 575 : 468 - 484
  • [10] A Bayesian Optimization Approach to Algorithm Parameter Tuning in Constrained Multiobjective Optimization
    Cork, Jordan N.
    Filipic, Bogdan
    OPTIMIZATION AND LEARNING, OLA 2024, 2025, 2311 : 109 - 122