Forest Fire Surveillance Through Deep Learning Segmentation and Drone Technology

被引:0
|
作者
Yandouzi, Mimoun [1 ,4 ]
Boukricha, Sokaina [1 ,4 ]
Grari, Mounir [2 ,4 ]
Berrahal, Mohammed [3 ,4 ]
Moussaoui, Omar [2 ,4 ]
Azizi, Mostafa [2 ,4 ]
Ghoumid, Kamal [1 ,4 ]
Elmiad, Aissa Kerkour [3 ,4 ]
机构
[1] Mohammed First Univ, LSI, ENSAO, Oujda, Morocco
[2] Mohammed First Univ, MATSI, ESTO, Oujda, Morocco
[3] Cadi Ayyad Univ, LMC, PFS, Safi, Morocco
[4] Mohammed First Univ, LARI, FSO, Oujda, Morocco
来源
ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024 | 2024年 / 11卷
关键词
Forest fires; Deep Learning; Segmentation; UAV (Drone); Mask R-CNN; YOLO;
D O I
10.1007/978-3-031-66850-0_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Forests are essential to our planet's well-being, playing a vital role in climate regulation, biodiversity preservation, and soil protection, thus serving as a cornerstone of our global ecosystem. The threat posed by forest fires highlights the critical need for early detection systems, which are indispensable tools in safeguarding ecosystems, livelihoods, and communities from devastating destruction. In combating forest fires, a range of techniques is employed for efficient early detection. Notably, the combination of drones with artificial intelligence, particularly deep learning, holds significant promise in this regard. Image segmentation emerges as a versatile method, involving the partitioning of images into multiple segments to simplify representation, and it leverages deep learning for fire detection, continuous monitoring of high-risk areas, and precise damage assessment. This study provides a comprehensive examination of recent advancements in semantic segmentation based on deep learning, with a specific focus on Mask R-CNN (Mask Region Convolutional Neural Network) and YOLO (You Only Look Once) v5, v7, and v8 variants. The emphasis is placed on their relevance in forest fire monitoring, utilizing drones equipped with high-resolution cameras.
引用
收藏
页码:3 / 12
页数:10
相关论文
共 50 条
  • [21] Review of Modern Forest Fire Detection Techniques: Innovations in Image Processing and Deep Learning
    Ozel, Berk
    Alam, Muhammad Shahab
    Khan, Muhammad Umer
    INFORMATION, 2024, 15 (09)
  • [22] Zonal segmentation in transrectal ultrasound images of the prostate through deep learning
    van Sloun, R. J. G.
    Wildeboer, R. R.
    Postema, A. W.
    Mannaerts, C. K.
    Gayet, M.
    Wijkstra, H.
    Mischi, M.
    2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2018,
  • [23] Bee2Fire: A Deep Learning Powered Forest Fire Detection System
    Valente de Almeida, Rui
    Crivellaro, Fernando
    Narciso, Maria
    Isabel Sousa, Ana
    Vieira, Pedro
    ICAART: PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 2, 2020, : 603 - 609
  • [24] Efficient Deep Learning Framework for Fire Detection in Complex Surveillance Environment
    Dilshad N.
    Khan T.
    Song J.
    Computer Systems Science and Engineering, 2023, 46 (01): : 749 - 764
  • [25] Assessment of China's forest fire occurrence with deep learning, geographic information and multisource data
    Shao, Yakui
    Wang, Zhichao
    Feng, Zhongke
    Sun, Linhao
    Yang, Xuanhan
    Zheng, Jun
    Ma, Tiantian
    JOURNAL OF FORESTRY RESEARCH, 2023, 34 (04) : 963 - 976
  • [26] Forest Fire Smoke Detection Based on Deep Learning Approaches and Unmanned Aerial Vehicle Images
    Kim, Soon-Young
    Muminov, Azamjon
    SENSORS, 2023, 23 (12)
  • [27] Assessment of China’s forest fire occurrence with deep learning, geographic information and multisource data
    Yakui Shao
    Zhichao Wang
    Zhongke Feng
    Linhao Sun
    Xuanhan Yang
    Jun Zheng
    Tiantian Ma
    Journal of Forestry Research, 2023, 34 : 963 - 976
  • [28] A Deep Learning Based Object Identification System for Forest Fire Detection
    Guede-Fernandez, Federico
    Martins, Leonardo
    de Almeida, Rui Valente
    Gamboa, Hugo
    Vieira, Pedro
    FIRE-SWITZERLAND, 2021, 4 (04):
  • [29] Intelligent Deep Learning Enabled Wild Forest Fire Detection System
    Almasoud, Ahmed S.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (02): : 1485 - 1498
  • [30] Deep Learning Based Forest Fire Classification and Detection in Satellite Images
    Priya, R. Shanmuga
    Vani, K.
    2019 11TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (ICOAC 2019), 2019, : 61 - 65