Dual spectral-spatial residual adaptive network for hyperspectral image classification in the presence of noisy labels

被引:0
作者
Sarpong, Kwabena [1 ]
Awrangjeb, Mohammad [1 ]
Islam, Md. Saiful [2 ]
机构
[1] Griffith Univ, Sch Informat & Commun Technol, Brisbane, Qld 4111, Australia
[2] Univ Newcastle, Coll Engn Sci & Environm, Sch Informat & Phys Sci, Callaghan, NSW 2308, Australia
关键词
Hyperspectral images; Image classification; Noisy labels; Deep learning; Robust loss function;
D O I
10.1016/j.engappai.2024.109900
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In real-world scenarios, Hyperspectral Image (HSI) datasets introduce potential noise inaccuracies due to multiple annotators. Label noise poses a significant challenge for practical deep learning, yet this issue is largely unexplored. Existing methods, which attempt to clean the noisy labelled data to increase classification accuracy, are computationally expensive and face the risk of removing correctly labelled data. In contrast, other methods that work with noisy labelled data but attempt to minimise the noise impact on classification by formulating a robust loss function lose classification accuracy when the ratio of incorrectly to correctly labelled data is high. This work proposes a Dual Spectral-Spatial Residual Adaptive (DSSRA) network to minimise the noise effect even when the amount of noisy labelled data is high. It offers the following contributions: (1) effective salient feature extraction modules to enhance the discriminatory representation of different classes in the proposed DSSRA network; (2) an adjusted noise tolerance loss (ANTL) function that down-weights the impact of learning with noisy labels. ANTL combines normalised focal loss and reverse cross-entropy to counter label noise; and (3) extensive testing on noisy versions of several benchmark HSI datasets. The results show that our DSSRA model outperforms the state-of-the-art HSI classification methods in handling noisy labels, offering a robust solution for real-world applications.
引用
收藏
页数:17
相关论文
共 57 条
[1]  
Author U., 2021, Hyperspectral remote sensing scenes
[2]   3-D Deep Learning Approach for Remote Sensing Image Classification [J].
Ben Hamida, Amina ;
Benoit, Alexandre ;
Lambert, Patrick ;
Ben Amar, Chokri .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08) :4420-4434
[3]   Comparative performance of machine learning algorithms for Forest Cover classification using ASI - PRISMA hyperspectral data [J].
Caputi, Eros ;
Delogu, Gabriele ;
Patriarca, Alessio ;
Perretta, Miriam ;
Gatti, Lorenzo ;
Boccia, Lorenzo ;
Ripa, Maria Nicolina .
PROCEEDINGS OF 2023 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY, METROAGRIFOR, 2023, :248-252
[4]   Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification [J].
Cheng, Gong ;
Li, Zhenpeng ;
Han, Junwei ;
Yao, Xiwen ;
Guo, Lei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (11) :6712-6722
[5]   Bedside hyperspectral imaging indicates a microcirculatory sepsis pattern-an observational study [J].
Dietrich, M. ;
Marx, S. ;
Forst, M. von der ;
Bruckner, T. ;
Schmitt, F. C. F. ;
Fiedler, M. O. ;
Nickel, F. ;
Studier-Fischer, A. ;
Mueller-Stich, B. P. ;
Hackert, T. ;
Brenner, T. ;
Weigand, M. A. ;
Uhle, F. ;
Schmidt, K. .
MICROVASCULAR RESEARCH, 2021, 136
[6]   An integrated and real-time social distancing, mask detection, and facial temperature video measurement system for pandemic monitoring [J].
Elhanashi, Abdussalam ;
Saponara, Sergio ;
Dini, Pierpaolo ;
Zheng, Qinghe ;
Morita, Daiki ;
Raytchev, Bisser .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2023, 20 (05)
[7]   Attention Multibranch Convolutional Neural Network for Hyperspectral Image Classification Based on Adaptive Region Search [J].
Feng, Jie ;
Wu, Xiande ;
Shang, Ronghua ;
Sui, Chenhong ;
Li, Jie ;
Jiao, Licheng ;
Zhang, Xiangrong .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06) :5054-5070
[8]   Heterogeneous marine robotic system for environmental monitoring missions [J].
Ferreira, Fausto ;
Babic, Anja ;
Orec, Martin ;
Miskovic, Nikola ;
Motta, Corrado ;
Ferretti, Roberta ;
Odetti, Angelo ;
Aracri, Simona ;
Bruzzone, Gabriele ;
Caccia, Massimo ;
Braga, Federica ;
Manfe, Giorgia ;
Lorenzetti, Giuliano ;
Scarpa, Gianmarco ;
De Pascalis, Francesca .
2023 IEEE UNDERWATER TECHNOLOGY, UT, 2023,
[9]   Low-Cost Hyperspectral Imaging to Detect Drought Stress in High-Throughput Phenotyping [J].
Genangeli, Andrea ;
Avola, Giovanni ;
Bindi, Marco ;
Cantini, Claudio ;
Cellini, Francesco ;
Grillo, Stefania ;
Petrozza, Angelo ;
Riggi, Ezio ;
Ruggiero, Alessandra ;
Summerer, Stephan ;
Tedeschi, Anna ;
Gioli, Beniamino .
PLANTS-BASEL, 2023, 12 (08)
[10]  
Ghosh A, 2017, AAAI CONF ARTIF INTE, P1919