More constructions of permutation pentanomials and hexanomials over Fp2m

被引:0
作者
Shen, Ruihua [1 ]
Liu, Xianping [1 ]
Xu, Xiaofang [2 ]
机构
[1] Hubei Minzu Univ, Sch Math & Stat, Enshi 445000, Peoples R China
[2] Hubei Polytech Univ, Sch Math & Phys, Huangshi 435003, Peoples R China
基金
中国国家自然科学基金;
关键词
Finite field; Permutation pentanomial; Permutation hexanomial; Algebraic curve; FINITE-FIELDS; POLYNOMIALS; TRINOMIALS; BINOMIALS;
D O I
10.1007/s00200-024-00673-3
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, two classes of permutation pentanomials over finite fields F-p2m are investigated by transforming the permutation property of polynomials to verifying that some low-degree equations has no solutions in the unit circle. Furthermore, based on the study of the algebraic curves for fractional polynomials, several classes of permutation pentanomials and hexanomials over F-52m are discovered. Additionally, we obtain some new permutation pentanomials, quadrinomials and octonomials over F-52m from known permutation polynomials in the unit circle.
引用
收藏
页数:23
相关论文
共 30 条
  • [11] A recent survey of permutation trinomials over finite fields
    Jarali, Varsha
    Poojary, Prasanna
    Bhatta, G. R. Vadiraja
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 29182 - 29220
  • [12] Permutation polynomials and applications to coding theory
    Laigle-Chapuy, Yann
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (01) : 58 - 70
  • [13] Li KQ, 2018, DESIGN CODE CRYPTOGR, V86, P2379, DOI 10.1007/s10623-017-0452-3
  • [14] Several classes of complete permutation polynomials with Niho exponents
    Li, Lisha
    Wang, Qiang
    Xu, Yunge
    Zeng, Xiangyong
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2021, 72
  • [15] [李丽莎 Li Lisha], 2019, [密码学报, Journal of Cryptologic Research], V6, P675
  • [16] Lidl R., 1997, Finite Fields
  • [17] Several classes of permutation pentanomials with the form xrh(xpm-1) over Fp2m
    Liu, Qian
    Chen, Guifeng
    Liu, Ximeng
    Zou, Jian
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2023, 92
  • [18] Permutation polynomials and group permutation polynomials
    Park, YH
    Lee, JB
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2001, 63 (01) : 67 - 74
  • [19] Qin XE, 2023, APPL ALGEBR ENG COMM, V34, P321, DOI 10.1007/s00200-021-00505-8
  • [20] Public key encryption and digital signatures based on permutation polynomials
    Schwenk, J
    Huber, K
    [J]. ELECTRONICS LETTERS, 1998, 34 (08) : 759 - 760