Enhanced production of recombinant calf chymosin in Kluyveromyces lactis via CRISPR-Cas9 engineering

被引:0
|
作者
Zheng, Yanli [1 ]
Wang, Shiqing [1 ]
Deng, Yuhui [1 ]
Hu, Ping [1 ,2 ]
Xue, Qingxin [3 ]
Li, Jiaxin [3 ]
Lei, Lei [1 ]
Chan, Zhuhua [2 ]
Yang, Jiangke [1 ]
Peng, Wenfang [3 ]
机构
[1] Wuhan Polytech Univ, Coll Life Sci & Technol, Wuhan 430023, Peoples R China
[2] Marine Biol Resources Dev & Utilizat Engn Technol, TIO, MNR, Xiamen 361005, Fujian, Peoples R China
[3] Hubei Univ, Hubei Engn Res Ctr Bioenzyme Catalysis, Environm Microbial Technol Ctr Hubei Prov, Sch Life Sci,State Key Lab Biocatalysis & Enzyme E, Wuhan 430062, Peoples R China
关键词
Kluyveromyces lactis; Precision strain engineering; CRISPR-Cas9; Recombinant calf chymosin; Secretory production; High-yield and industrial-scale; KLPMR1; GENE; EXPRESSION; SECRETION; GENOME; INACTIVATION; PROTEINS; TOOL;
D O I
10.1016/j.biortech.2025.132116
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
As an important industrial enzyme, chymosin has been widely used in cheese manufacturing. Fermentation with Kluyveromyces lactis has allowed recombinant chymosin production to fit the growing global demand for cheese consumption; yet improvements can be made to allow for stable and larger-scale production. In this work, various chymosin producing (CP) strains were constructed via targeted chromosomal integration of various copies of a prochymosin expression cassette (PEC) using a CRISPR-Cas9 platform optimized for K. lactis. It enabled the demonstration that chymosin yields could be increased along with gradual chromosomal accumulation of PEC inserts within up to 3 copies. Finally, an optimal CP3i strain was constructed, and with which high yields of recombinant chymosin were attained, reaching ca. 1,200 SU/mL in shake-flask fermentation and ca. 28,000 SU/mL in batch-mode bioreaction, respectively. The activity of the product in milk-curding was observed. These findings provide direction to apply K. lactis-based platforms in the subsequent industrial-scale production of recombinant chymosin.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Optimization of genome editing through CRISPR-Cas9 engineering
    Zhang, Jian-Hua
    Adikaram, Poorni
    Pandey, Mritunjay
    Genis, Allison
    Simonds, William F.
    BIOENGINEERED, 2016, 7 (03) : 166 - 174
  • [32] CRISPR-Cas9: How bacteria revolutionize genome engineering
    Charpentier, E.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 754 - 754
  • [33] Zebrafish Genome Engineering Using the CRISPR-Cas9 System
    Li, Mingyu
    Zhao, Liyuan
    Page-McCaw, Patrick S.
    Chen, Wenbiao
    TRENDS IN GENETICS, 2016, 32 (12) : 815 - 827
  • [34] A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi
    Nodvig, Christina S.
    Nielsen, Jakob B.
    Kogle, Martin E.
    Mortensen, Uffe H.
    PLOS ONE, 2015, 10 (07):
  • [35] CRISPR/Cas9 Mediated Cell Wall Engineering of Plant Cells for Enhanced Recombinant Protein Production
    Karki, Uddhab
    Fang, Hong
    Xu, Jianfeng
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2022, 58 (04) : 678 - 678
  • [36] Enhanced Proofreading Governs CRISPR-Cas9 Targeting Accuracy
    Chen, Janice S.
    Dagdas, Yavuz S.
    Kleinstiver, Benjamin P.
    Welch, Moira M.
    Sousa, Alexander A.
    Harrington, Lucas B.
    Sternberg, Samuel H.
    Joung, Keith J.
    Yildiz, Ahmet
    Doudna, Jennifer A.
    BIOPHYSICAL JOURNAL, 2018, 114 (03) : 194A - 194A
  • [37] Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
    Chen, Janice S.
    Dagdas, Yavuz S.
    Kleinstiver, Benjamin P.
    Welch, Moira M.
    Sousa, Alexander A.
    Harrington, Lucas B. .
    Sternberg, Samuel H.
    Joung, J. Keith
    Yildiz, Ahmet
    Doudna, Jennifer A.
    NATURE, 2017, 550 (7676) : 407 - +
  • [38] Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach
    Chari, Raj
    Mali, Prashant
    Moosburner, Mark
    Church, George M.
    NATURE METHODS, 2015, 12 (09) : 823 - +
  • [39] Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach
    Chari R.
    Mali P.
    Moosburner M.
    Church G.M.
    Nature Methods, 2015, 12 (9) : 823 - 826
  • [40] Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9
    Song, Yafeng
    He, Siqi
    Abdallah, Ingy I.
    Jopkiewicz, Anita
    Setroikromo, Rita
    van Merkerk, Ronald
    Tepper, Pieter G.
    Quax, Wim J.
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (16) : 4785 - 4794