Para-HyperKa<spacing diaeresis>hler Geometry of the Deformation Space of Maximal Globally Hyperbolic Anti-de Sitter Three-Manifolds

被引:0
作者
Mazzoli, Filippo [1 ]
Seppi, Andrea [2 ]
Tamburelli, Andrea [3 ]
机构
[1] Univ Calif Riverside, Dept Math, 900 Univ Ave,Skye Hall 378, Riverside, CA 92521 USA
[2] Univ Torino, Dipartimento Matemat Giuseppe Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
[3] Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56124 Pisa, Italy
基金
美国国家科学基金会;
关键词
HARMONIC MAPS; SYMPLECTIC-GEOMETRY; CYCLIC EXTENSION; WICK ROTATIONS; SURFACES; CURVATURE; ENERGY; DEGENERATION; EQUATIONS;
D O I
10.1090/memo/1546
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the para-hyper-K & auml;hler geometry of the deformation space of MGHC anti-de Sitter structures on Sigma R, for Sigma a closed oriented surface. We show that a neutral pseudo-Riemannian metric and three symplectic structures coexist with an integrable complex structure and two para-complex structures, satisfying the relations of para-quaternionic numbers. We show that these structures are directly related to the geometry of MGHC manifolds, via the Mess homeomorphism, the parameterization of Krasnov-Schlenker by the induced metric on K-surfaces, the identification with the cotangent bundle T & ring;T(Sigma), and the circle action that arises from this identification. Finally, we study the relation to the natural para-complex geometry that the space inherits from being a component of the PSL(2, B)-character variety, where B is the algebra of para-complex numbers, and the symplectic geometry deriving from Goldman symplectic form.
引用
收藏
页码:1 / 107
页数:120
相关论文
共 52 条
  • [1] Atiyah M. F., Bott R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, 308, 1505, pp. 523-615, (1983)
  • [2] Andersson L., Barbot T., Benedetti R., Bonsante F., Goldman W. M., Labourie F., Scannell K. P., Schlenker J.-M., Notes on: “Lorentz spacetimes of constant curvature, Geom. Dedicata, 126, pp. 3-45, (2007)
  • [3] Andersson L., Barbot T., Beguin F., Zeghib A., Cosmological time versus CMC time in spacetimes of constant curvature, Asian J. Math, 16, 1, pp. 37-87, (2012)
  • [4] Alekseevskii D. V., Medori K., Tomassini A., Homogeneous para-Kählerian Einstein manifolds (Russian, with Russian summary), Uspekhi Mat. Nauk, 64, 1, pp. 3-50, (2009)
  • [5] Alekseevsky D. V., Medori C., Tomassini A., Para-Kähler Einstein metrics on homogeneous manifolds (English, with English and French summaries), C. R. Math. Acad. Sci. Paris, 347, 1-2, pp. 69-72, (2009)
  • [6] Barbot T., Deformations of Fuchsian AdS representations are quasi-Fuchsian, J. Differential Geom, 101, 1, pp. 1-46, (2015)
  • [7] Barbot T., Lorentzian Kleinian groups, Handbook of group actions. Vol. III, Adv. Lect. Math. (ALM), 40, pp. 311-358, (2018)
  • [8] Benedetti R., Bonsante F., Canonical Wick rotations in 3-dimensional gravity, Mem. Amer. Math. Soc, 198, 926, (2009)
  • [9] Barbot T., Beguin F., Zeghib A., Constant mean curvature foliations of globally hyperbolic spacetimes locally modelled on AdS3, Geom. Dedicata, 126, pp. 71-129, (2007)
  • [10] Barbot T., Beguin F., Zeghib A., Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes: application to the Minkowski problem in the Minkowski space (English, with English and French summaries), Ann. Inst. Fourier (Grenoble), 61, 2, pp. 511-591, (2011)