MEGATRON: Machine Learning in 5G with Analysis of Traffic in Open Radio Access Networks

被引:0
|
作者
Belgiovine, Mauro [1 ]
Gu, Jerry [1 ]
Groen, Joshua [1 ]
Sirera, Miquel [1 ]
Demir, Utku [1 ]
Chowdhury, Kaushik [1 ]
机构
[1] Northeastern Univ, Inst Wireless Internet Things, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
O-RAN; 5G; Transformers; Traffic Classification; Network Slicing; CLASSIFICATION;
D O I
10.1109/CNC59896.2024.10556189
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the advent of SG and next-generation cellular networks and the increasing complexity of assigning users traffic types for efficient resource allocation, Open Radio Access Networks (O-RAN) offer intelligent virtualized frameworks for optimizing network operations related to supporting diverse types of traffic. In this paper, we utilize the native support for machine learning in O-RAN to develop a transformer-based SG traffic classification system that identifies, with high accuracy, conditions when broadband, machine-to-machine type communication, and ultra-reliable low-latency communication are present. By utilizing distinct temporal slices of O-RAN-defined key performance indicators generated from traffic captures as inputs (as opposed to directly accessing user-plane data) and filtering for non-critical control traffic, we ensure user confidentiality while maintaining a high degree of classification performance. Our transformer model is able to achieve an average offline accuracy of 99%+ for the longest traffic slice length, with the online deployment achieving an average of similar to 90% accuracy across all slice lengths.
引用
收藏
页码:1054 / 1058
页数:5
相关论文
共 50 条
  • [21] Interference Management Enablers for 5G Radio Access Networks
    Pateromichelakis, E.
    Celik, H.
    Fantini, R.
    Bulakci, Oe.
    Campoy, L. M.
    Gutierrez-Estevez, D. M.
    Ibrahim, A. M.
    Lorca, F. J.
    Shariat, M.
    Tesanovic, M.
    Yang, Y.
    2016 IEEE CONFERENCE ON STANDARDS FOR COMMUNICATIONS AND NETWORKING (CSCN), 2016,
  • [22] A Dynamic Functional Split in 5G Radio Access Networks
    Alba, Alberto Martinez
    Kellerer, Wolfgang
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [23] Cache Management for 5G Cloud Radio Access Networks
    Tsai, Chin
    Moh, Melody
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2018), 2018,
  • [24] Artificial Intelligence Defined 5G Radio Access Networks
    Yao, Miao
    Sohul, Munawwar
    Marojevic, Vuk
    Reed, Jeffrey H.
    IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (03) : 14 - 20
  • [25] Cloud Technologies for Flexible 5G Radio Access Networks
    Rost, Peter
    Bernardos, Carlos J.
    De Domenico, Antonio
    Di Girolamo, Marco
    Lalam, Massinissa
    Maeder, Andreas
    Sabella, Dario
    Wuebben, Dirk
    IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (05) : 68 - 76
  • [26] Impact of Network Slicing on 5G Radio Access Networks
    da Silva, Icaro
    Mildh, Gunnar
    Kaloxylos, Alexandros
    Spapis, Panagiotis
    Buracchini, Enrico
    Trogolo, Alessandro
    Zimmermann, Gerd
    Bayer, Nico
    2016 EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS (EUCNC), 2016, : 153 - 157
  • [27] 5G Vehicular Network Resource Management for Improving Radio Access Through Machine Learning
    Tayyaba, Sahrish Khan
    Khattak, Hasan Ali
    Almogren, Ahmad
    Shah, Munam Ali
    Din, Ikram Ud
    Alkhalifa, Ibrahim
    Guizani, Mohsen
    IEEE ACCESS, 2020, 8 : 6792 - 6800
  • [28] Traffic Flow Estimation using Machine Learning and 4G/5G Radio Frequency Counters
    Yaghoubi, Forough
    Catovic, Armin
    Gusmao, Arthur
    Pieczkowski, Jan
    Boros, Peter
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [29] ORAN-B5G: A Next-Generation Open Radio Access Network Architecture With Machine Learning for Beyond 5G in Industrial 5.0
    Khan, Abdullah Ayub
    Laghari, Asif Ali
    Baqasah, Abdullah M.
    Alroobaea, Roobaea
    Gadekallu, Thippa Reddy
    Sampedro, Gabriel Avelino
    Zhu, Yaodong
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2024, 8 (03): : 1026 - 1036
  • [30] On the Training of Reinforcement Learning-based Algorithms in 5G and Beyond Radio Access Networks
    Vila, I
    Perez-Romero, J.
    Sallent, O.
    PROCEEDINGS OF THE 2022 IEEE 8TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2022): NETWORK SOFTWARIZATION COMING OF AGE: NEW CHALLENGES AND OPPORTUNITIES, 2022, : 207 - 215