In-context learning of state estimators

被引:0
作者
Busetto, R. [1 ]
Breschi, V. [2 ]
Forgione, M. [3 ]
Piga, D. [3 ]
Formentin, S. [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Bioingn & Informaz, Milan, Italy
[2] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[3] IDSIA Dalle Molle Inst Artificial Intelligence US, Lugano, Switzerland
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 15期
关键词
In-context Learning; Machine Learning and Data Mining; Filtering and Smoothing;
D O I
10.1016/j.ifacol.2024.08.519
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State estimation has a pivotal role in several applications, including but not limited to advanced control design. Especially when dealing with nonlinear systems state estimation is a nontrivial task, often entailing approximations and challenging fine-tuning phases. In this work, we propose to overcome these challenges by formulating an in-context state-estimation problem, enabling us to learn a state estimator for a class of (nonlinear) systems abstracting from particular instances of the state seen during training. To this end, we extend an in-context learning framework recently proposed for system identification, showing via a benchmark numerical example that this approach allows us to (i) use training data directly for the design of the state estimator, (ii) not requiring extensive fine-tuning procedures, while (iii) achieving superior performance compared to state-of-the-art benchmarks. Copyright (c) 2024 The Authors.
引用
收藏
页码:145 / 150
页数:6
相关论文
共 17 条
  • [1] Optimizing process economics online using model predictive control
    Amrit, Rishi
    Rawlings, James B.
    Biegler, Lorenz T.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2013, 58 : 334 - 343
  • [2] CasADi: a software framework for nonlinear optimization and optimal control
    Andersson, Joel A. E.
    Gillis, Joris
    Horn, Greg
    Rawlings, James B.
    Diehl, Moritz
    [J]. MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) : 1 - 36
  • [3] Awasthi V., 2021, Current Approaches in Science and Technology Research, V15, P1
  • [4] Busetto R, 2023, Arxiv, DOI arXiv:2308.15458
  • [5] Meta-Learning of Neural State-Space Models Using Data From Similar Systems
    Chakrabarty, Ankush
    Wichern, Gordon
    Laughman, Christopher R.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 1490 - 1495
  • [6] Chen ZZ, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P1072, DOI 10.23919/ICIF.2018.8454982
  • [7] Dong QX, 2024, Arxiv, DOI [arXiv:2301.00234, DOI 10.48550/ARXIV.2301.00234]
  • [8] From System Models to Class Models: An In-Context Learning Paradigm
    Forgione, Marco
    Pura, Filippo
    Piga, Dario
    [J]. IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3513 - 3518
  • [9] Ghosh A., 2023, 2023 31 EUROPEAN SIG, P870, DOI 10.23919/EUSIPCO58844.2023.10289946
  • [10] Unscented filtering and nonlinear estimation
    Julier, SJ
    Uhlmann, JK
    [J]. PROCEEDINGS OF THE IEEE, 2004, 92 (03) : 401 - 422