Recent advances and current status of semiconductor stannate-based electrode materials for electrochemical sensing and energy applications

被引:0
作者
Manikanta, P. [1 ]
Mohanty, Jubate [1 ]
Mounesh [1 ]
Nikam, Rohit Rangnath [1 ]
Sandeep, S. [2 ]
Santhosh, A. S. [3 ]
Pramoda, K. [1 ]
Nagaraja, Bhari Mallanna [1 ]
机构
[1] Jain Deemed Univ, Ctr Nano & Mat Sci, Jain Global Campus, Bangalore 562112, Karnataka, India
[2] JSS Sci & Technol Univ, SJ Coll Engn, Dept Chem, Mysuru 570008, Karnataka, India
[3] NMKRV Coll Women, Dept Chem UG, Bengaluru 560011, Karnataka, India
关键词
Stannate based electrode materials; Electrochemical sensing; Super capacitor; Electrocatalytic hydrogen and oxygen evolution reactions; SENSITIVE DETECTION; SELECTIVE DETECTION; FACILE SYNTHESIS; GREEN SYNTHESIS; GRAPHENE OXIDE; PERFORMANCE; CARBON; NANOPARTICLES; COMPOSITE; SENSOR;
D O I
10.1016/j.jallcom.2025.179370
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Overcoming the challenges of renewable energy and environmental pollution is essential for ensuring a sustainable future for generations to come. Innovations like supercapacitors, electrocatalytic hydrogen and oxygen evolution reactions, and electrochemical sensors have significantly contributed to pushing forward the boundaries of energy storage and conversion techniques and sensing of environmental pollutants. A critical and integral constituent of these advanced technologies is the electrode material, which is a crucial material or transducer that supports these processes effectively. Stannate-based materials form a class of metal oxides that exhibit electrocatalytic activity with pronounced electrical and magnetic properties, along with stability and conductivity. In this review, the performance of stannate-based materials as an electrode material in supercapacitors, HER-OER, and in sensing technologies was appraised. However, their mixed properties with other metals and conductive materials. The future prospects as well as the challenges associated with the utilization of stannatebased electrode materials in these particular fields, are critically examined and thoroughly discussed. This analysis seeks to offer meaningful insights that can steer and inspire future research and development in this field.
引用
收藏
页数:35
相关论文
共 182 条
[1]  
Ahmad I., 2023, Adv. Colloid Interface Sci., DOI [10.1007/s42114-024-00921-7, DOI 10.1007/S42114-024-00921-7]
[2]   Dual-mode electrochemical evaluation of 8-hydroxy-5-nitroquinoline in industrial sewage [J].
Alagumalai, Krishnapandi ;
Shanmugam, Ragurethinam ;
Chen, Shen-Ming ;
Chen, Tse-Wei ;
Al-Mohaimeed, Amal M. ;
Al-onazi, Wedad A. ;
Elshikh, Mohamed Soliman .
SURFACES AND INTERFACES, 2021, 23
[3]   Synthesis and Exploration of Barium Stannate-Zirconate BaSn1-x Zr x O3 (0 ≤ X ≤ 1) Solid Solutions as Photocatalysts [J].
Alammar, Tarek ;
Mudring, Anja-Verena .
INORGANIC CHEMISTRY, 2024, 63 (14) :6132-6140
[4]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[5]   Electrodeposition of Tin-Based Electrocatalysts with Different Surface Tin Species Distributions for Electrochemical Reduction of CO2 to HCOOH [J].
An, Xiaowei ;
Li, Shasha ;
Yoshida, Akihiro ;
Wang, Zhongde ;
Hao, Xiaogang ;
Abudula, Abuliti ;
Guan, Guoqing .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (10) :9360-9368
[6]   Facile synthesis of ultrathin NiSnO3 nanoparticles for enhanced electrochemical detection of an antibiotic drug in water bodies and biological samples [J].
Annalakshmi, Muthaiah ;
Sumithra, Subbarayan ;
Chen, Shen-Ming ;
Chen, Tse-Wei ;
Zheng, Xuei-Hong .
NEW JOURNAL OF CHEMISTRY, 2020, 44 (25) :10604-10612
[7]   Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: A comprehensive review [J].
Ansari, Mohd Zahid ;
Ansari, Sajid Ali ;
Kim, Soo-Hyun .
JOURNAL OF ENERGY STORAGE, 2022, 53
[8]   Substitution effects on the structural, mechanical, electronic and electrochemical properties of lithium/sodium strontium stannate perovskite for battery applications [J].
Antonio, J. E. ;
Cervantes, J. M. ;
Munoz, H. ;
Arevalo-Lopez, E. P. ;
Romero, M. ;
Carvajal, E. ;
Escamilla, R. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 189
[9]   Electrochemical detection of ammonia solution using tin oxide nanoparticles synthesized via sol-gel route [J].
Arya, Sandeep ;
Riyas, Mohammad ;
Sharma, Asha ;
Singh, Bikram ;
Prerna ;
Bandhoria, Pankaj ;
Khan, Saleem ;
Bharti, Vishal .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2018, 124 (08)
[10]   Investigation of electrochemical properties of various transition metals doped SnO2 spherical nanostructures for supercapacitor applications [J].
Asaithambi, S. ;
Sakthivel, P. ;
Karuppaiah, M. ;
Sankar, G. Udhaya ;
Balamurugan, K. ;
Yuvakkumar, R. ;
Thambidurai, M. ;
Ravi, G. .
JOURNAL OF ENERGY STORAGE, 2020, 31