Artificial Intelligence in Vascular Diseases: From Clinical Practice to Medical Research and Education

被引:0
作者
Lareyre, Fabien [1 ,2 ,3 ]
Raffort, Juliette [3 ,4 ,5 ]
机构
[1] Hosp Antibes Juan Les Pins, Dept Vasc Surg, 107 Ave Nice, F-06600 Antibes, France
[2] Univ Cote Azur, CNRS, UMR7370, LP2M, Nice, France
[3] Federat Hosp Univ FHU Plan & Go, Nice, France
[4] Univ Cote Azur, Inst Cote Azur 3IA, Nice, France
[5] Univ Hosp Nice, Clin Chem Lab, Nice, France
关键词
artificial intelligence; machine learning; predictive model; vascular disease; aortic disease; peripheral artery disease; carotid stenosis; ABDOMINAL AORTIC-ANEURYSM; MACHINE; MORTALITY; IDENTIFICATION; PREDICTION; SYSTEMS; FUTURE; REPAIR;
D O I
10.1177/00033197251324630
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Artificial Intelligence (AI) has brought new opportunities in medicine, with a great potential to improve care provided to patients. Given the technical complexity and continuously evolving field, it can be challenging for vascular specialists to anticipate and foresee how AI will shape their practice. The aim of this review is to provide an overview of the current landscape of applications of AI in clinical practice for the management of non-cardiac vascular diseases including aortic aneurysm, peripheral artery disease, carotid stenosis, and venous diseases. The review describes and highlights how AI has the potential to shape the three pillars in the management of vascular diseases including clinical practice, medical research and education. In the limelight of these results, we show how AI should be considered and developed within a responsible ecosystem favoring transdisciplinary collaboration, where multiple stake holders can work together to face current challenges and move forward future directions.
引用
收藏
页数:20
相关论文
共 102 条
[1]  
Aboyans V., 2018, EUR J VASC ENDOVASC, V55
[2]   Mining peripheral arterial disease cases from narrative clinical notes using natural language processing [J].
Afzal, Naveed ;
Sohn, Sunghwan ;
Abram, Sara ;
Scott, Christopher G. ;
Chaudhry, Rajeev ;
Liu, Hongfang ;
Kullo, Iftikhar J. ;
Arruda-Olson, Adelaide M. .
JOURNAL OF VASCULAR SURGERY, 2017, 65 (06) :1753-1761
[3]   Predictors of 30-Day Unplanned Readmission After Carotid Artery Stenting Using Artificial Intelligence [J].
Amritphale, Amod ;
Chatterjee, Ranojoy ;
Chatterjee, Suvo ;
Amritphale, Nupur ;
Rahnavard, Ali ;
Awan, G. Mustafa ;
Omar, Bassam ;
Fonarow, Gregg C. .
ADVANCES IN THERAPY, 2021, 38 (06) :2954-2972
[4]   Transitioning health systems for multimorbidity [J].
Atun, Rifat .
LANCET, 2015, 386 (9995) :721-722
[5]  
Banerjee D, 2023, Arxiv, DOI [arXiv:2308.04624, DOI 10.48550/ARXIV.2308.04624]
[6]   Evaluation of machine learning methodology for the prediction of healthcare resource utilization and healthcare costs in patients with critical limb ischemia-is preventive and personalized approach on the horizon? [J].
Berger, Jeffrey S. ;
Haskell, Lloyd ;
Ting, Windsor ;
Lurie, Fedor ;
Chang, Shun-Chiao ;
Mueller, Luke A. ;
Elder, Kenneth ;
Rich, Kelly ;
Crivera, Concetta ;
Schein, Jeffrey R. ;
Alas, Veronica .
EPMA JOURNAL, 2020, 11 (01) :53-64
[7]   Development of a convolutional neural network to detect abdominal aortic aneurysms [J].
Camara, Justin R. ;
Tomihama, Roger T. ;
Pop, Andrew ;
Shedd, Matthew P. ;
Dobrowski, Brandon S. ;
Knox, Cole J. ;
Abou-Zamzam, Ahmed M., Jr. ;
Kiang, Sharon C. .
JOURNAL OF VASCULAR SURGERY CASES INNOVATIONS AND TECHNIQUES, 2022, 8 (02) :305-311
[8]  
Chang RW., 2021, J Vasc Surg, V74
[9]   Radiomics and machine learning to predict aggressive type 2 endoleaks after endovascular aneurysm repair: a proof of concept [J].
Charalambous, Stavros ;
Klontzas, Michail E. ;
Kontopodis, Nikolaos ;
Ioannou, Christos, V ;
Perisinakis, Kostas ;
Maris, Thomas G. ;
Damilakis, John ;
Karantanas, Apostolos ;
Tsetis, Dimitrios .
ACTA RADIOLOGICA, 2022, 63 (09) :1293-1299
[10]   Artificial intelligence in the prediction of venous thromboembolism: A systematic review and pooled analysis [J].
Chiasakul, Thita ;
Lam, Barbara D. ;
Mcnichol, Megan ;
Robertson, William ;
Rosovsky, Rachel P. ;
Lake, Leslie ;
Vlachos, Ioannis S. ;
Adamski, Alys ;
Reyes, Nimia ;
Abe, Karon ;
Zwicker, Jeffrey I. ;
Patell, Rushad .
EUROPEAN JOURNAL OF HAEMATOLOGY, 2023, 111 (06) :951-962