Mixed finite element method for a time-fractional generalized Rosenau-RLW-Burgers equation

被引:0
|
作者
Yang, Ning [1 ]
Liu, Yang [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 01期
基金
中国国家自然科学基金;
关键词
time-fractional generalized Rosenau-RLW-Burgers equation; mixed finite element method; generalized BDF2-theta; stability; correction term; weak singularity; DIFFERENCE-SCHEMES; DIFFUSION; APPROXIMATION; STABILITY;
D O I
10.3934/math.2025080
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, the time-fractional generalized Rosenau-RLW-Burgers equation is numerically solved, where the generalized BDF2-theta is used to discretize the temporal direction, and the mixed finite element method is applied to the spatial direction. The stability of the fully discrete scheme is proven. Finally, the effectiveness of the numerical scheme is verified through some numerical examples, and the singularity of nonsmooth solutions in the initial time layer is effectively resolved by adding the correction term.
引用
收藏
页码:1757 / 1778
页数:22
相关论文
共 50 条
  • [41] Optimal pointwise-in-time error analysis of a mixed finite element method for a multi-term time-fractional fourth-order equation
    Huang, Chaobao
    An, Na
    Chen, Hu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2023, 135 : 149 - 156
  • [42] An efficient algorithm for solving the variable-order time-fractional generalized Burgers' equation
    Rawani, Mukesh Kumar
    Verma, Amit Kumar
    Cattani, Carlo
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (06) : 5269 - 5291
  • [43] A Numerical Method for the Solution of the Time-Fractional Diffusion Equation
    Ferras, Luis L.
    Ford, Neville J.
    Morgado, Maria L.
    Rebelo, Magda
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT 1, 2014, 8579 : 117 - 131
  • [44] The ultra-weak discontinuous Galerkin method for time-fractional Burgers equation
    Chen, Xiaoxiao
    Chen, Yanli
    JOURNAL OF ANALYSIS, 2025, : 795 - 817
  • [45] Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers? equation
    Peng, Xiangyi
    Xu, Da
    Qiu, Wenlin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 208 : 702 - 726
  • [46] Two-Grid Finite Element Method for the Time-Fractional Allen-Cahn Equation With the Logarithmic Potential
    Zhang, Jiyu
    Li, Xiaocui
    Ma, Wenyan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6654 - 6663
  • [47] Finite element error analysis of a time-fractional nonlocal diffusion equation with the Dirichlet energy
    Manimaran, J.
    Shangerganesh, L.
    Debbouche, Amar
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 382 (382)
  • [48] A Local Discontinuous Galerkin Method for Time-Fractional Burgers Equations
    Yuan, Wenping
    Chen, Yanping
    Huang, Yunqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (04) : 818 - 837
  • [49] A New Mixed Element Method for a Class of Time-Fractional Partial Differential Equations
    Liu, Yang
    Li, Hong
    Gao, Wei
    He, Siriguleng
    Fang, Zhichao
    SCIENTIFIC WORLD JOURNAL, 2014,
  • [50] A Dimensional-Splitting Weak Galerkin Finite Element Method for 2D Time-Fractional Diffusion Equation
    Seal, Aniruddha
    Natesan, Srinivasan
    Toprakseven, Suayip
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 98 (03)