A genetic balancing act: Exploring segregation distortion of SCN resistance in soybean [Glycine max (L.) Merr.]

被引:0
|
作者
Ozer, Seda [1 ]
Bent, Andrew F. [2 ]
Monteverde, Eliana D. [1 ]
Schultz, Sarah J. [1 ]
Diers, Brian W. [1 ]
机构
[1] Univ Illinois, Dept Crop Sci, Urbana, IL 61801 USA
[2] Univ Wisconsin Madison, Dept Plant Pathol, Madison, WI USA
关键词
CYST-NEMATODE; HETERODERA-GLYCINES; COPY-NUMBER; RHG1; VIABILITY; PI-88788;
D O I
10.1002/csc2.70040
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rhg1 is the most important locus conferring resistance to soybean cyst nematode (SCN; Heterodera glycine Ichinohe) in soybean [Glycine max (L.) Merr.]. Previous research has shown that to obtain viable plants, the SCN resistance allele at Rhg1 on chromosome 18 needs to be paired with NSFRAN07, an atypical resistance-associated NSF allele of the N-ethylmaleimide sensitive factor (NSF) gene on chromosome 07. This causes segregation distortion in populations developed from crosses between resistant and susceptible plants. Our study aimed to improve our understanding of this segregation distortion and determine the developmental stage at which it occurs. DNA from developing F2 seeds and F2 plants originating from crosses between resistant and susceptible parents was genotyped with markers for the rhg1 and NSF loci using TaqMan assays. Chi-square tests revealed significant deviations from the expected Mendelian segregation ratio (1:2:1:2:4:2:1:2:1) in both F2 seeds and plants, indicating segregation distortion at these loci. The absence of the rhg1-b_rhg1-b_NSFCh07_NSFCh07 genotype supports the previous finding that the combination of the resistance allele rhg1-b and the commonly occurring NSFCh07 allele is lethal, apparently because the alpha-SNAP (where SNAP is soluble NSF attachment protein) encoded by rhg1-b or rhg1-a interacts well with the NSFRAN07 protein but not the more common NSFCh07 protein. The findings indicate that segregation distortion occurs prior to seed maturation and is primarily due to zygotic selection during early seed development. The results emphasize the need to consider this genetic interaction in breeding efforts to improve soybean since segregation distortion may affect the inheritance of SCN resistance and other traits linked to Rhg1 or NSFCh07.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Correlations of oil and protein with isoflavone concentration in soybean [Glycine max (L.) Merr.]
    Charron, CS
    Allen, FL
    Johnson, RD
    Pantalone, VR
    Sams, CE
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2005, 53 (18) : 7128 - 7135
  • [42] Physiologic and agronomic response of soybean variety 'Conquista' [Glycine max (L.) Merr.]
    Chacon Iznaga, Ahmed
    Dominguez Hurtado, Ismabel
    Barreda Valdes, Amilcar
    Fernandez Figueredo, Kendra
    Colas Sanchez, Ariany
    CENTRO AGRICOLA, 2014, 41 (03): : 61 - 69
  • [43] Isolation and characterization of phytochemical constituents from soybean (Glycine max L. Merr.)
    Lee, Jin Hwan
    Baek, In-Youl
    Kang, Nam Suk
    Ko, Jong Min
    Han, Won-Young
    Kim, Hyun-Tae
    Oh, Ki-Won
    Suh, Duck-Yong
    Ha, Tae Joung
    Park, Ki Hun
    FOOD SCIENCE AND BIOTECHNOLOGY, 2006, 15 (03) : 392 - 398
  • [44] Calmodulin: Coping with biotic and abiotic stresses in soybean (Glycine max (L.) Merr.)
    Ramlal, Ayyagari
    Harika, Amooru
    Jayasri, V
    Subramaniam, Sreeramanan
    Mallikarjuna, Bingi Pujari
    Raju, Dhandapani
    Lal, S. K.
    Rajendran, Ambika
    PLANT STRESS, 2024, 14
  • [45] EFFECTS OF GERMINATION CONDITIONS ON PEPTIDES ACCUMULATION IN SOYBEAN (GLYCINE MAX L. MERR.)
    Zou, Y.
    Hou, X.
    ACTA ALIMENTARIA, 2017, 46 (03) : 346 - 354
  • [46] Varietal Differences in the Antioxidative Properties of Soybean [Glycine Max (L.) Merr.] Seeds
    Rao, D. Easwar
    Chaitanya, K. V.
    JOURNAL OF FOOD BIOCHEMISTRY, 2015, 39 (04) : 398 - 408
  • [47] Prioritization and Evaluation of Flooding Tolerance Genes in Soybean [Glycine max (L.) Merr.]
    Lai, Mu-Chien
    Lai, Zheng-Yuan
    Jhan, Li-Hsin
    Lai, Ya-Syuan
    Kao, Chung-Feng
    FRONTIERS IN GENETICS, 2021, 11
  • [48] Characterization of a soybean (Glycine max L. Merr.) germplasm collection for root traits
    Fried, Harrison Gregory
    Narayanan, Sruthi
    Fallen, Benjamin
    PLOS ONE, 2018, 13 (07):
  • [49] QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.)
    Li, YD
    Wang, YJ
    Tong, YP
    Gao, JG
    Zhang, JS
    Chen, SY
    EUPHYTICA, 2005, 142 (1-2) : 137 - 142
  • [50] Sequence divergence of recently duplicate genes in soybean (Glycine max L. Merr.)
    Cai, Chun Mei
    Van, Kyujung
    Kim, Moon Young
    Lee, Suk-Ha
    GENES & GENOMICS, 2008, 30 (03) : 271 - 281