Approximation from shift-invariant spaces with smooth generators

被引:0
|
作者
Selvan, A. Antony [1 ]
Bhandari, Ayush [2 ]
Radha, R. [3 ]
机构
[1] Indian Inst Technol Dhanbad, Dhanbad 826004, India
[2] Imperial Coll London, Dept Elect & Elect Engn, London, England
[3] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
关键词
Approximate approximation; Averaged moduli of smoothness; Laurent operators; Shift-invariant spaces; Strang-Fix conditions; ERROR; RECONSTRUCTION;
D O I
10.1007/s11075-025-02065-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we examine the convergence of sampling expansions in shift-invariant spaces with smooth generators for fundamentally large classes of functions. We establish the rate of approximation of a signal (not necessarily continuous) by the sampling series in terms of an Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-average modulus of smoothness. We investigate the convergence and error analysis of sampling and projection operators based on Gaussian generators. Finally, we discuss the possibility of predicting a signal solely from past samples using sampling series based on Gaussian generators.
引用
收藏
页数:32
相关论文
共 50 条