Groundwater Mapping and Modeling Using Towed Transient Electromagnetic Data Based on Deep Learning

被引:0
作者
Xian, Jinchi [1 ,2 ]
He, Ziang [1 ]
Hu, Xiangyun [1 ,3 ,4 ,5 ]
Liu, Lichao [1 ,5 ]
Auken, Esben [6 ]
Revil, Andre [7 ]
Cai, Hongzhu [1 ,3 ,4 ,5 ]
机构
[1] China Univ Geosci, Sch Geophys & Geomatics, Wuhan 430074, Peoples R China
[2] Chinese Acad Sci, Greater Bay Area Branch, Aerosp Informat Res Inst, Guangzhou 510700, Peoples R China
[3] China Univ Geosci, Sch Geophys & Geomatics, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Peoples R China
[4] China Univ Geosci, State Key Lab Geol Proc & Mineral Resources, Wuhan 430074, Peoples R China
[5] China Univ Geosci, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Peoples R China
[6] Aarhus Univ, Dept Geosci, DK-8000 Aarhus, Denmark
[7] Univ Savoie Mont Blanc, Univ Grenoble Alpes, CNRS, UMR 5204,EDYTEM, F-73370 Le Bourget du Lac, France
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Electromagnetics; Data models; Conductivity; Transient analysis; Interpolation; Splines (mathematics); Rocks; Meters; Surveys; Surface treatment; Deep learning; depth-of-investigation (DOI) constraint; hydrogeophysical modeling; towed transient electromagnetic (tTEM) inversion; AIRBORNE GEOPHYSICAL-DATA; ELECTRICAL-CONDUCTIVITY; RESISTIVITY MODELS; INVERSION; SYSTEM; SANDS; TTEM; TOP;
D O I
10.1109/TGRS.2024.3509526
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The capturing subsurface structure through geophysical measurements can gain a more comprehensive understanding of groundwater distribution. While geophysical electromagnetic methods yield subsurface resistivity data, converting this into hydrological information is not straightforward. Well-logging offers insights into rock strata vertically but lacks spatial detail on large-scale lithological variations. Consequently, merging geophysical and well-logging data for extensive hydrogeological modeling has emerged as a crucial research area. In this study, we introduce convolutional neural networks and bi-directional long short-term memory (CNNs-BiLSTM) network to process massive towed transient electromagnetic (tTEM) datasets. Our network incorporates the depth-of-investigation (DOI) and smooth constraints for effective tTEM data inversion. We further validate the network's effectiveness and generalization capacity using synthetic models and real tTEM data from Switzerland's Aare Valley region. Furthermore, by combining the limited well-logging data, we establish a spatial clay content distribution model using an optimal inversion interpolation method. Leveraging this lithology model, we employ the groundwater modeling system (GMS) platform to determine regional groundwater levels. Our numerical simulation aligns closely with results obtained via the top of the saturated zone (TSZ) method and exhibits strong agreement with observed water table data, affirming the reliability of our comprehensive hydrogeological model. Our proposed method and workflow present an innovative approach to effective hydrological modeling utilizing large-scale geophysical electromagnetic data.
引用
收藏
页数:12
相关论文
共 65 条
[1]  
Asif MR, 2022, GEOPHYSICS, V87, pE177, DOI [10.1190/GEO2021-0335.1, 10.1190/geo2021-0335.1]
[2]   A Neural Network-Based Hybrid Framework for Least-Squares Inversion of Transient Electromagnetic Data [J].
Asif, Muhammad Rizwan ;
Bording, Thue S. ;
Maurya, Pradip K. ;
Zhang, Bo ;
Fiandaca, Gianluca ;
Grombacher, Denys J. ;
Christiansen, Anders, V ;
Auken, Esben ;
Larsen, Jakob Juul .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[3]   Large-scale TEM investigation for groundwater [J].
Auken, Esben ;
Jorgensen, Flemming ;
Sorensen, Kurt I. .
EXPLORATION GEOPHYSICS, 2003, 34 (03) :188-194
[4]   tTEM - A towed transient electromagnetic system for detailed 3D imaging of the top 70 m of the subsurface [J].
Auken, Esben ;
Foged, Nikolaj ;
Larsen, Jakob Juul ;
Lassen, Knud Valdemar Trollund ;
Maurya, Pradip Kumar ;
Dath, Soren Moller ;
Eiskjaer, Tore Tolstrup .
GEOPHYSICS, 2019, 84 (01) :E13-E22
[5]   An overview of a highly versatile forward and stable inverse algorithm for airborne, ground-based and borehole electromagnetic and electric data [J].
Auken, Esben ;
Christiansen, Anders Vest ;
Kirkegaard, Casper ;
Fiandaca, Gianluca ;
Schamper, Cyril ;
Behroozmand, Ahmad Ali ;
Binley, Andrew ;
Nielsen, Emil ;
Efferso, Flemming ;
Christensen, Niels Boie ;
Sorensen, Kurt ;
Foged, Nikolaj ;
Vignoli, Giulio .
EXPLORATION GEOPHYSICS, 2015, 46 (03) :223-235
[6]   (Quasi-)Real-Time Inversion of Airborne Time-Domain Electromagnetic Data via Artificial Neural Network [J].
Bai, Peng ;
Vignoli, Giulio ;
Viezzoli, Andrea ;
Nevalainen, Jouni ;
Vacca, Giuseppina .
REMOTE SENSING, 2020, 12 (20) :1-11
[7]   Probabilistic Categorical Groundwater Salinity Mapping From Airborne Electromagnetic Data Adjacent to California's Lost Hills and Belridge Oil Fields [J].
Ball, L. B. ;
Davis, T. A. ;
Minsley, B. J. ;
Gillespie, J. M. ;
Landon, M. K. .
WATER RESOURCES RESEARCH, 2020, 56 (06)
[8]   Imaging subsurface orebodies with airborne electromagnetic data using a recurrent neural network [J].
Bang, Minkyu ;
Oh, Seokmin ;
Noh, Kyubo ;
Seol, Soon Jee ;
Byun, Joongmoo .
GEOPHYSICS, 2021, 86 (06) :E407-E419
[9]   Mapping groundwater contamination using dc resistivity and VLF geophysical methods - A case study [J].
Benson, AK ;
Payne, KL ;
Stubben, MA .
GEOPHYSICS, 1997, 62 (01) :80-86
[10]   The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales [J].
Binley, Andrew ;
Hubbard, Susan S. ;
Huisman, Johan A. ;
Revil, Andre ;
Robinson, David A. ;
Singha, Kamini ;
Slater, Lee D. .
WATER RESOURCES RESEARCH, 2015, 51 (06) :3837-3866