Development and construction of magnet system for world's first full high temperature superconducting tokamak

被引:8
作者
Li, Z. Y. [1 ]
Pan, Z. C. [1 ]
Zhang, Q. J. [2 ]
Zhu, K. P. [1 ]
Zhang, C. [1 ]
Zhang, Z. W. [1 ]
Dong, G. [1 ]
Ye, Y. M. [1 ]
Yang, Z. [1 ]
机构
[1] Energy Singular Fus Power Technol Shanghai Ltd, Shanghai, Peoples R China
[2] Shanghai Dianji Univ, Sch Mat Sci & Engn, Shanghai, Peoples R China
来源
SUPERCONDUCTIVITY | 2024年 / 12卷
关键词
F irst operation; H H70; H TS coils; T okamak;
D O I
10.1016/j.supcon.2024.100137
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In June 2024, the world's first full high temperature superconducting (HTS) tokamak has successfully achieved its first plasma operation in Shanghai, China [1]. This tokamak device, HH70, is designed by Energy Singularity Fusion Power Technology (Shanghai) Ltd. (ES Company) in Shanghai, China. The conceptual and engineering design of HH70 was initiated in June 2022, whose major radius (R0) and minor radius (a) are 0.7-0.75 m and 0.25-0.31 m, respectively. Its toroidal magnetic field B0 at R0 = 0.7 m is 0.6 T, the total inductance of the toroidal field (TF) magnet are 6.48 H. Over the past two years, ES company has achieved the first milestone: successfully design, construct and operate an HTS tokamak, and has amassed experience and know-how about such a first-of-its-kind HTS device. The HH70 tokamak's magnet system consists of three types of coils: central solenoid (CS) coil, poloidal field (PF) coil, and toroidal field (TF) coil, in which all of the coils are fabricated by HTS conductors. Hence, the HH70 is currently the first tokamak in the world to be fully integrated with HTS coils, marking a groundbreaking advancement in fusion technology.
引用
收藏
页数:3
相关论文
共 5 条
[1]  
ECNS, About us
[2]   Fifty Years of Magnetic Fusion Research (1958-2008): Brief Historical Overview and Discussion of Future Trends [J].
El-Guebaly, Laila A. .
ENERGIES, 2010, 3 (06) :1067-1086
[3]   The SPARC Toroidal Field Model Coil Program [J].
Hartwig, Zachary S. ;
Vieira, Rui F. ;
Dunn, Darby ;
Golfinopoulos, Theodore ;
LaBombard, Brian ;
Lammi, Christopher J. ;
Michael, Philip C. ;
Agabian, Susan ;
Arsenault, David ;
Barnett, Raheem ;
Barry, Mike ;
Bartoszek, Larry ;
Beck, William K. ;
Bellofatto, David ;
Brunner, Daniel ;
Burke, William ;
Burrows, Jason ;
Byford, William ;
Cauley, Charles ;
Chamberlain, Sarah ;
Chavarria, David ;
Cheng, J. L. ;
Chicarello, James ;
Diep, Van ;
Dombrowski, Eric ;
Doody, Jeffrey ;
Doos, Raouf ;
Eberlin, Brian ;
Estrada, Jose ;
Fry, Vincent ;
Fulton, Matthew ;
Garberg, Sarah ;
Granetz, Robert ;
Greenberg, Aliya ;
Greenwald, Martin ;
Heller, Samuel ;
Hubbard, Amanda E. ;
Ihloff, Ernest ;
Irby, James H. ;
Iverson, Mark ;
Jardin, Peter ;
Korsun, Daniel ;
Kuznetsov, Sergey ;
Lane-Walsh, Stephen ;
Landry, Richard ;
Lations, Richard ;
Leccacorvi, Rick ;
Levine, Matthew ;
Mackay, George ;
Metcalfe, Kristen .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2024, 34 (02)
[4]   Review of commercial nuclear fusion projects [J].
Meschini, Samuele ;
Laviano, Francesco ;
Ledda, Federico ;
Pettinari, Davide ;
Testoni, Raffella ;
Torsello, Daniele ;
Panella, Bruno .
FRONTIERS IN ENERGY RESEARCH, 2023, 11
[5]   Compact fusion energy based on the spherical tokamak [J].
Sykes, A. ;
Costley, A. E. ;
Windsor, C. G. ;
Asunta, O. ;
Brittles, G. ;
Buxton, P. ;
Chuyanov, V. ;
Connor, J. W. ;
Gryaznevich, M. P. ;
Huang, B. ;
Hugill, J. ;
Kukushkin, A. ;
Kingham, D. ;
Langtry, A. V. ;
McNamara, S. ;
Morgan, J. G. ;
Noonan, P. ;
Ross, J. S. H. ;
Shevchenko, V. ;
Slade, R. ;
Smith, G. .
NUCLEAR FUSION, 2018, 58 (01)