Genome editing of porcine zygotes via lipofection of two guide RNAs using a CRISPR/Cas9 system

被引:0
|
作者
Lin, Qingyi [1 ,2 ]
Takebayashi, Koki [1 ,2 ]
Torigoe, Nanaka [1 ,2 ]
Liu, Bin [1 ,2 ]
Namula, Zhao [1 ,2 ,3 ]
Hirata, Maki [1 ,2 ]
Tanihara, Fuminori [1 ,4 ]
Nagahara, Megumi [1 ,2 ]
Otoi, Takeshige [1 ,2 ]
机构
[1] Tokushima Univ, Bioinnovat Res Ctr, Tokushima 7793233, Japan
[2] Tokushima Univ, Fac Biosci & Bioind, Tokushima 7793233, Japan
[3] Guangdong Ocean Univ, Coll Coastal Agr Sci, Zhanjiang 524091, Peoples R China
[4] Jichi Med Univ, Ctr Dev Adv Med Technol, Shimotsuke, Tochigi 3290498, Japan
基金
日本学术振兴会;
关键词
CRISPR/Cas9; system; Growth hormone receptor (GHR); Glycoprotein alpha-galactosyltransferase 1 ( GGTA1 ); Lipofection; Porcine zygote; GENE; GENERATION; CULTURE; MODEL;
D O I
暂无
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
CRISPR/Cas9-based multiplex genome editing via electroporation is relatively efficient; however, lipofection is versatile because of its ease of use and low cost. Here, we aimed to determine the efficiency of lipofection in CRISPR/Cas9-based multiplex genome editing using growth hormone receptor (GHR) and glycoprotein alphagalactosyltransferase 1 (GGTA1)-targeting guide RNAs (gRNAs) in pig zygotes. Zona pellucida-free zygotes were collected 10 h after in vitro fertilization and incubated with Cas9, gRNAs, and Lipofectamine 2000 (LP2000) for 5 h. In Experiment 1, we evaluated the mutation efficiency of gRNAs targeting either GHR or GGTA1 in zygotes transfected using LP2000 and cultured in 4-well plates. In Experiment 2, we examined the effects of the culture method on the development, mutation rate, and mutation efficiency of zygotes with simultaneously double-edited GHR and GGTA1, cultured using 4-well (group culture) and 25-well plates (individual culture). In Experiment 3, we assessed the effect of additional GHR-targeted lipofection before and after simultaneous double gRNA-targeted lipofection on the mutation efficiency of edited embryos cultured in 25-well plates. No significant differences in mutation rates were observed between the zygotes edited with either gRNA. Moreover, the formation rate of blastocysts derived from GHR and GGTA1 double-edited zygotes was significantly increased in the 25-well plate culture compared to that in the 4-well plate culture. However, mutations were only observed in GGTA1 when zygotes were transfected with both gRNAs, irrespective of the culture method used. GHR mutations were detected only in blastocysts derived from zygotes subjected to GHR-targeted lipofection before simultaneous double gRNA-targeted lipofection. Overall, our results suggest that additional lipofection before simultaneous double gRNA-targeted lipofection induces additional mutations in the zygotes.
引用
收藏
页码:356 / 361
页数:6
相关论文
共 50 条
  • [11] CRISPR/Cas9 Delivery System Engineering for Genome Editing in Therapeutic Applications
    Cheng, Hao
    Zhang, Feng
    Ding, Yang
    PHARMACEUTICS, 2021, 13 (10)
  • [12] Genome Editing of Babesia bovis Using the CRISPR/Cas9 System
    Hakimi, Hassan
    Ishizaki, Takahiro
    Kegawa, Yuto
    Kaneko, Osamu
    Kawazu, Shin-ichiro
    Asada, Masahito
    MSPHERE, 2019, 4 (03):
  • [13] A CRISPR/Cas9 toolkit for multiplex genome editing in plants
    Xing, Hui-Li
    Dong, Li
    Wang, Zhi-Ping
    Zhang, Hai-Yan
    Han, Chun-Yan
    Liu, Bing
    Wang, Xue-Chen
    Chen, Qi-Jun
    BMC PLANT BIOLOGY, 2014, 14
  • [14] Inducible Genome Editing with Conditional CRISPR/Cas9 Mice
    Katigbak, Alexandra
    Robert, Francis
    Paquet, Marilene
    Pelletier, Jerry
    G3-GENES GENOMES GENETICS, 2018, 8 (05): : 1627 - 1635
  • [15] Insights into maize genome editing via CRISPR/Cas9
    Agarwal, Astha
    Yadava, Pranjal
    Kumar, Krishan
    Singh, Ishwar
    Kaul, Tanushri
    Pattanayak, Arunava
    Agrawal, Pawan Kumar
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2018, 24 (02) : 175 - 183
  • [16] CRISPR/Cas9: A powerful tool for crop genome editing
    Song, Gaoyuan
    Jia, Meiling
    Chen, Kai
    Kong, Xingchen
    Khattak, Bushra
    Xie, Chuanxiao
    Li, Aili
    Mao, Long
    CROP JOURNAL, 2016, 4 (02): : 75 - 82
  • [17] The CRISPR/Cas9 system and its applications in crop genome editing
    Bao, Aili
    Burritt, David J.
    Chen, Haifeng
    Zhou, Xinan
    Cao, Dong
    Lam-Son Phan Tran
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2019, 39 (03) : 321 - 336
  • [18] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [19] Generation of an in vitro model of β-thalassemia using the CRISPR/Cas9 genome editing system
    Ajami, Monireh
    Atashi, Amir
    Kaviani, Saeid
    Kiani, Jafar
    Soleimani, Masoud
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2020, 121 (02) : 1420 - 1430
  • [20] Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing
    Kelley, Melissa L.
    Strezoska, Zaklina
    He, Kaizhang
    Vermeulen, Annaleen
    Smith, Anja van Brabant
    JOURNAL OF BIOTECHNOLOGY, 2016, 233 : 74 - 83