A Deep Learning Approach for the Identification of the Molecular Subtypes of Pancreatic Ductal Adenocarcinoma Based on Whole Slide Pathology Images

被引:1
作者
Ahmadvand, Pouya [1 ]
Farahani, Hossein [1 ]
Farnell, David [2 ,5 ]
Darbandsari, Amirali [3 ]
Topham, James [6 ]
Karasinska, Joanna [6 ]
Nelson, Jessica [8 ]
Naso, Julia [2 ]
Jones, Steven J. M. [7 ]
Renouf, Daniel [4 ]
Schaeffer, David F. [2 ,5 ,6 ]
Bashashati, Ali [1 ,2 ]
机构
[1] Univ British Columbia, Sch Biomed Engn, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Med, Vancouver, BC, Canada
[5] Vancouver Gen Hosp, Vancouver, BC, Canada
[6] Pancreas Ctr BC, Vancouver, BC, Canada
[7] Michael Smith Genome Sci Ctr, Vancouver, BC, Canada
[8] British Columbia Canc Res Ctr, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
CANCER; SURVIVAL; TUMOR;
D O I
10.1016/j.ajpath.2024.08.006
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Delayed diagnosis and treatment resistance result in high pancreatic ductal adenocarcinoma (PDAC) mortality rates. Identifying molecular subtypes can improve treatment, but current methods are costly and time-consuming. In this study, deep learning models were used to identify histologic features that classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained histopathologic slides. A total of 97 histopathology slides associated with resectable PDAC from The Cancer Genome Atlas project were used to train a deep learning model and test the performance on 44 needle biopsy material (110 slides) from a local annotated patient cohort. The model achieved balanced accuracy of 96.19% and 83.03% in identifying the classical and basal subtypes of PDAC in The Cancer Genome Atlas and the local cohort, respectively. This study provides a promising method to cost-effectively and rapidly classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained slides, potentially leading to more effective clinical management of this disease. (Am J Pathol 2024, 194: 2302-2312; https:// doi.org/10.1016/j.ajpath.2024.08.006)
引用
收藏
页码:2302 / 2312
页数:11
相关论文
共 36 条
  • [1] Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial
    Aung, Kyaw L.
    Fischer, Sandra E.
    Denroche, Robert E.
    Jang, Gun-Ho
    Dodd, Anna
    Creighton, Sean
    Southwood, Bernadette
    Liang, Sheng-Ben
    Chadwick, Dianne
    Zhang, Amy
    O'Kane, Grainne M.
    Albaba, Hamzeh
    Moura, Shari
    Grant, Robert C.
    Miller, Jessica K.
    Mbabaali, Faridah
    Pasternack, Danielle
    Lungu, Ilinca M.
    Bartlett, John M. S.
    Ghai, Sangeet
    Lemire, Mathieu
    Holter, Spring
    Connor, Ashton A.
    Moffitt, Richard A.
    Yeh, Jen Jen
    Timms, Lee
    Krzyzanowski, Paul M.
    Dhani, Neesha
    Hedley, David
    Notta, Faiyaz
    Wilson, Julie M.
    Moore, Malcolm J.
    Gallinger, Steven
    Knox, Jennifer J.
    [J]. CLINICAL CANCER RESEARCH, 2018, 24 (06) : 1344 - 1354
  • [2] Genomic analyses identify molecular subtypes of pancreatic cancer
    Bailey, Peter
    Chang, David K.
    Nones, Katia
    Johns, Amber L.
    Patch, Ann-Marie
    Gingras, Marie-Claude
    Miller, David K.
    Christ, Angelika N.
    Bruxner, Tim J. C.
    Quinn, Michael C.
    Nourse, Craig
    Murtaugh, L. Charles
    Harliwong, Ivon
    Idrisoglu, Senel
    Manning, Suzanne
    Nourbakhsh, Ehsan
    Wani, Shivangi
    Fink, Lynn
    Holmes, Oliver
    Chin, Vencssa
    Anderson, Matthew J.
    Kazakoff, Stephen
    Leonard, Conrad
    Newell, Felicity
    Waddell, Nick
    Wood, Scott
    Xu, Qinying
    Wilson, Peter J.
    Cloonan, Nicole
    Kassahn, Karin S.
    Taylor, Darrin
    Quek, Kelly
    Robertson, Alan
    Pantano, Lorena
    Mincarelli, Laura
    Sanchez, Luis N.
    Evers, Lisa
    Wu, Jianmin
    Pinese, Mark
    Cowley, Mark J.
    Jones, Marc D.
    Colvin, Emily K.
    Nagrial, Adnan M.
    Humphrey, Emily S.
    Chantrill, Lorraine A.
    Mawson, Amanda
    Humphris, Jeremy
    Chou, Angela
    Pajic, Marina
    Scarlett, Christopher J.
    [J]. NATURE, 2016, 531 (7592) : 47 - +
  • [3] Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer
    Bejnordi, Babak Ehteshami
    Veta, Mitko
    van Diest, Paul Johannes
    van Ginneken, Bram
    Karssemeijer, Nico
    Litjens, Geert
    van der Laak, Jeroen A. W. M.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22): : 2199 - 2210
  • [4] Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study
    Bilal, Mohsin
    Raza, Shan E. Ahmed
    Azam, Ayesha
    Graham, Simon
    Ilyas, Mohammad
    Cree, Ian A.
    Snead, David
    Minhas, Fayyaz
    Rajpoot, Nasir M.
    [J]. LANCET DIGITAL HEALTH, 2021, 3 (12): : E763 - E772
  • [5] The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images
    Boschman, Jeffrey
    Farahani, Hossein
    Darbandsari, Amirali
    Ahmadvand, Pouya
    Van Spankeren, Ashley
    Farnell, David
    Levine, Adrian B.
    Naso, Julia R.
    Churg, Andrew
    Jones, Steven J. M.
    Yip, Stephen
    Kobel, Martin
    Huntsman, David G.
    Gilks, C. Blake
    Bashashati, Ali
    [J]. JOURNAL OF PATHOLOGY, 2022, 256 (01) : 15 - 24
  • [6] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [7] Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy
    Collisson, Eric A.
    Sadanandam, Anguraj
    Olson, Peter
    Gibb, William J.
    Truitt, Morgan
    Gu, Shenda
    Cooc, Janine
    Weinkle, Jennifer
    Kim, Grace E.
    Jakkula, Lakshmi
    Feiler, Heidi S.
    Ko, Andrew H.
    Olshen, Adam B.
    Danenberg, Kathleen L.
    Tempero, Margaret A.
    Spellman, Paul T.
    Hanahan, Douglas
    Gray, Joe W.
    [J]. NATURE MEDICINE, 2011, 17 (04) : 500 - U140
  • [8] Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
    Coudray, Nicolas
    Ocampo, Paolo Santiago
    Sakellaropoulos, Theodore
    Narula, Navneet
    Snuderl, Matija
    Fenyo, David
    Moreira, Andre L.
    Razavian, Narges
    Tsirigos, Aristotelis
    [J]. NATURE MEDICINE, 2018, 24 (10) : 1559 - +
  • [9] Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
    Cruz-Roa, Angel
    Gilmore, Hannah
    Basavanhally, Ajay
    Feldman, Michael
    Ganesan, Shridar
    Shih, Natalie N. C.
    Tomaszewski, John
    Gonzalez, Fabio A.
    Madabhushi, Anant
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [10] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848