A Deep Learning Approach for the Identification of the Molecular Subtypes of Pancreatic Ductal Adenocarcinoma Based on Whole Slide Pathology Images

被引:3
作者
Ahmadvand, Pouya [1 ]
Farahani, Hossein [1 ]
Farnell, David [2 ,5 ]
Darbandsari, Amirali [3 ]
Topham, James [6 ]
Karasinska, Joanna [6 ]
Nelson, Jessica [8 ]
Naso, Julia [2 ]
Jones, Steven J. M. [7 ]
Renouf, Daniel [4 ]
Schaeffer, David F. [2 ,5 ,6 ]
Bashashati, Ali [1 ,2 ]
机构
[1] Univ British Columbia, Sch Biomed Engn, Vancouver, BC, Canada
[2] Univ British Columbia, Dept Pathol & Lab Med, Vancouver, BC, Canada
[3] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
[4] Univ British Columbia, Dept Med, Vancouver, BC, Canada
[5] Vancouver Gen Hosp, Vancouver, BC, Canada
[6] Pancreas Ctr BC, Vancouver, BC, Canada
[7] Michael Smith Genome Sci Ctr, Vancouver, BC, Canada
[8] British Columbia Canc Res Ctr, Vancouver, BC, Canada
基金
加拿大健康研究院; 加拿大自然科学与工程研究理事会;
关键词
CANCER; SURVIVAL; TUMOR;
D O I
10.1016/j.ajpath.2024.08.006
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Delayed diagnosis and treatment resistance result in high pancreatic ductal adenocarcinoma (PDAC) mortality rates. Identifying molecular subtypes can improve treatment, but current methods are costly and time-consuming. In this study, deep learning models were used to identify histologic features that classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained histopathologic slides. A total of 97 histopathology slides associated with resectable PDAC from The Cancer Genome Atlas project were used to train a deep learning model and test the performance on 44 needle biopsy material (110 slides) from a local annotated patient cohort. The model achieved balanced accuracy of 96.19% and 83.03% in identifying the classical and basal subtypes of PDAC in The Cancer Genome Atlas and the local cohort, respectively. This study provides a promising method to cost-effectively and rapidly classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained slides, potentially leading to more effective clinical management of this disease. (Am J Pathol 2024, 194: 2302-2312; https:// doi.org/10.1016/j.ajpath.2024.08.006)
引用
收藏
页码:2302 / 2312
页数:11
相关论文
共 36 条
[1]   Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial [J].
Aung, Kyaw L. ;
Fischer, Sandra E. ;
Denroche, Robert E. ;
Jang, Gun-Ho ;
Dodd, Anna ;
Creighton, Sean ;
Southwood, Bernadette ;
Liang, Sheng-Ben ;
Chadwick, Dianne ;
Zhang, Amy ;
O'Kane, Grainne M. ;
Albaba, Hamzeh ;
Moura, Shari ;
Grant, Robert C. ;
Miller, Jessica K. ;
Mbabaali, Faridah ;
Pasternack, Danielle ;
Lungu, Ilinca M. ;
Bartlett, John M. S. ;
Ghai, Sangeet ;
Lemire, Mathieu ;
Holter, Spring ;
Connor, Ashton A. ;
Moffitt, Richard A. ;
Yeh, Jen Jen ;
Timms, Lee ;
Krzyzanowski, Paul M. ;
Dhani, Neesha ;
Hedley, David ;
Notta, Faiyaz ;
Wilson, Julie M. ;
Moore, Malcolm J. ;
Gallinger, Steven ;
Knox, Jennifer J. .
CLINICAL CANCER RESEARCH, 2018, 24 (06) :1344-1354
[2]   Genomic analyses identify molecular subtypes of pancreatic cancer [J].
Bailey, Peter ;
Chang, David K. ;
Nones, Katia ;
Johns, Amber L. ;
Patch, Ann-Marie ;
Gingras, Marie-Claude ;
Miller, David K. ;
Christ, Angelika N. ;
Bruxner, Tim J. C. ;
Quinn, Michael C. ;
Nourse, Craig ;
Murtaugh, L. Charles ;
Harliwong, Ivon ;
Idrisoglu, Senel ;
Manning, Suzanne ;
Nourbakhsh, Ehsan ;
Wani, Shivangi ;
Fink, Lynn ;
Holmes, Oliver ;
Chin, Vencssa ;
Anderson, Matthew J. ;
Kazakoff, Stephen ;
Leonard, Conrad ;
Newell, Felicity ;
Waddell, Nick ;
Wood, Scott ;
Xu, Qinying ;
Wilson, Peter J. ;
Cloonan, Nicole ;
Kassahn, Karin S. ;
Taylor, Darrin ;
Quek, Kelly ;
Robertson, Alan ;
Pantano, Lorena ;
Mincarelli, Laura ;
Sanchez, Luis N. ;
Evers, Lisa ;
Wu, Jianmin ;
Pinese, Mark ;
Cowley, Mark J. ;
Jones, Marc D. ;
Colvin, Emily K. ;
Nagrial, Adnan M. ;
Humphrey, Emily S. ;
Chantrill, Lorraine A. ;
Mawson, Amanda ;
Humphris, Jeremy ;
Chou, Angela ;
Pajic, Marina ;
Scarlett, Christopher J. .
NATURE, 2016, 531 (7592) :47-+
[3]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[4]   Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study [J].
Bilal, Mohsin ;
Raza, Shan E. Ahmed ;
Azam, Ayesha ;
Graham, Simon ;
Ilyas, Mohammad ;
Cree, Ian A. ;
Snead, David ;
Minhas, Fayyaz ;
Rajpoot, Nasir M. .
LANCET DIGITAL HEALTH, 2021, 3 (12) :E763-E772
[5]   The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images [J].
Boschman, Jeffrey ;
Farahani, Hossein ;
Darbandsari, Amirali ;
Ahmadvand, Pouya ;
Van Spankeren, Ashley ;
Farnell, David ;
Levine, Adrian B. ;
Naso, Julia R. ;
Churg, Andrew ;
Jones, Steven J. M. ;
Yip, Stephen ;
Kobel, Martin ;
Huntsman, David G. ;
Gilks, C. Blake ;
Bashashati, Ali .
JOURNAL OF PATHOLOGY, 2022, 256 (01) :15-24
[6]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[7]   Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy [J].
Collisson, Eric A. ;
Sadanandam, Anguraj ;
Olson, Peter ;
Gibb, William J. ;
Truitt, Morgan ;
Gu, Shenda ;
Cooc, Janine ;
Weinkle, Jennifer ;
Kim, Grace E. ;
Jakkula, Lakshmi ;
Feiler, Heidi S. ;
Ko, Andrew H. ;
Olshen, Adam B. ;
Danenberg, Kathleen L. ;
Tempero, Margaret A. ;
Spellman, Paul T. ;
Hanahan, Douglas ;
Gray, Joe W. .
NATURE MEDICINE, 2011, 17 (04) :500-U140
[8]   Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning [J].
Coudray, Nicolas ;
Ocampo, Paolo Santiago ;
Sakellaropoulos, Theodore ;
Narula, Navneet ;
Snuderl, Matija ;
Fenyo, David ;
Moreira, Andre L. ;
Razavian, Narges ;
Tsirigos, Aristotelis .
NATURE MEDICINE, 2018, 24 (10) :1559-+
[9]   Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent [J].
Cruz-Roa, Angel ;
Gilmore, Hannah ;
Basavanhally, Ajay ;
Feldman, Michael ;
Ganesan, Shridar ;
Shih, Natalie N. C. ;
Tomaszewski, John ;
Gonzalez, Fabio A. ;
Madabhushi, Anant .
SCIENTIFIC REPORTS, 2017, 7
[10]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848