Cell Architecture Design for Fast-Charging Lithium-Ion Batteries in Electric Vehicles

被引:0
|
作者
Yeganehdoust, Firoozeh [1 ]
Reddy, Anil Kumar Madikere Raghunatha [1 ]
Zaghib, Karim [1 ]
机构
[1] Concordia Univ, Dept Chem & Mat Engn, 1455 De Maisonneuve Blvd West, Montreal, PQ H3G 1M8, Canada
来源
BATTERIES-BASEL | 2025年 / 11卷 / 01期
关键词
lithium-ion batteries; fast and ultra-fast charging; electric vehicles; internal cell architecture; cell design; system integration; THICK ELECTRODES; TAB; OPTIMIZATION; PERFORMANCE; SEPARATOR; DENSITY; PACK;
D O I
10.3390/batteries11010020
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper reviews the growing demand for and importance of fast and ultra-fast charging in lithium-ion batteries (LIBs) for electric vehicles (EVs). Fast charging is critical to improving EV performance and is crucial in reducing range concerns to make EVs more attractive to consumers. We focused on the design aspects of fast- and ultra-fast-charging LIBs at different levels, from internal cell architecture, through cell design, to complete system integration within the vehicle chassis. This paper explores battery internal cell architecture, including how the design of electrodes, electrolytes, and other factors may impact battery performance. Then, we provide a detailed review of different cell format characteristics in cylindrical, prismatic, pouch, and blade shapes. Recent trends, technological advancements in tab design and placement, and shape factors are discussed with a focus on reducing ion transport resistance and enhancing energy density. In addition to cell-level modifications, pack and chassis design must be implemented across aspects such as safety, mechanical integrity, and thermal management. Considering the requirements and challenges of high-power charging systems, we examined how modules, packs, and the vehicle chassis should be adapted to provide fast and ultra-fast charging. In this way, we explored the potential of fast and ultra-fast charging by investigating the required modification of individual cells up to their integration into the EV system through pack and chassis design.
引用
收藏
页数:40
相关论文
共 50 条
  • [41] The Optimal Charging Method Research for Lithium-ion Batteries Used in Electric Vehicles
    Wang Zhifu
    Wang Yupu
    Li Zhi
    Song Qiang
    Rong Yinan
    CLEAN ENERGY FOR CLEAN CITY: CUE 2016 - APPLIED ENERGY SYMPOSIUM AND FORUM: LOW-CARBON CITIES AND URBAN ENERGY SYSTEMS, 2016, 104 : 74 - 79
  • [42] Dual-functional and polydopamine-coated vanadium disulfide for "fast-charging" lithium-ion batteries
    Wang, Lu
    Dang, Hao
    He, Tianqi
    Liu, Rui
    Wang, Rui
    Ran, Fen
    BATTERY ENERGY, 2024, 3 (04):
  • [43] Impact of Electrode and Cell Design on Fast Charging Capabilities of Cylindrical Lithium-Ion Batteries
    Sturm, J.
    Frank, A.
    Rheinfeld, A.
    Erhard, S. V.
    Jossen, A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (13)
  • [44] Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries
    Wang, Mengmeng
    Wang, Junru
    Xiao, Jingchao
    Ren, Naiqing
    Pan, Bicai
    Chen, Chu-sheng
    Chen, Chun-hua
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (14) : 16279 - 16288
  • [45] Study on the Optimal Charging Strategy for Lithium-Ion Batteries Used in Electric Vehicles
    Zhang, Shuo
    Zhang, Chengning
    Xiong, Rui
    Zhou, Wei
    ENERGIES, 2014, 7 (10): : 6783 - 6797
  • [46] Self-Expanding Ion-Transport Channels on Anodes for Fast-Charging Lithium-Ion Batteries
    An, Juan
    Zhang, Hongyu
    Qi, Lu
    Li, Guoxing
    Li, Yuliang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (07)
  • [47] Design and implementation of a battery management system for lithium-ion batteries in electric vehicles
    Ramakrishnan J.
    Joy A.
    Jeyaraj S.
    International Journal of Energy Technology and Policy, 2021, 17 (06) : 529 - 555
  • [48] Review on Health Management System for Lithium-Ion Batteries of Electric Vehicles
    Omariba, Zachary Bosire
    Zhang, Lijun
    Sun, Dongbai
    ELECTRONICS, 2018, 7 (05):
  • [49] Fast charging design for Lithium-ion batteries via Bayesian optimization
    Jiang, Benben
    Berliner, Marc D.
    Lai, Kun
    Asinger, Patrick A.
    Zhao, Hongbo
    Herring, Patrick K.
    Bazant, Martin Z.
    Braatz, Richard D.
    APPLIED ENERGY, 2022, 307
  • [50] Amorphous Vanadium Oxide Nanosheets with Alterable Polyhedron Configuration for Fast-Charging Lithium-Ion Batteries
    Wu, Bei
    Niu, Shuwen
    Wang, Chao
    Wu, Geng
    Zhang, Yida
    Han, Xiao
    Liu, Peigen
    Lin, Yue
    Yan, Wensheng
    Wang, Gongming
    Hong, Xun
    SMALL, 2023, 19 (43)