It is known that the automorphism group of any projective K3 surface is finitely generated. In this paper, we consider a certain kind of K3 surfaces with Picard number 3 whose automorphism groups are isomorphic to congruence subgroups of the modular group PSL 2 ( Z). In particular, we show that a free group of arbitrarily large rank appears as the automorphism group of such a K3 surface. (c) 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
机构:
Univ Tokyo, Grad Sch Math Sci, Maguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Maguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Hashimoto, Kenji
Keum, JongHae
论文数: 0引用数: 0
h-index: 0
机构:
Korea Inst Adv Study, Sch Math, 85 Hoegiro, Seoul 02455, South KoreaUniv Tokyo, Grad Sch Math Sci, Maguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Keum, JongHae
Lee, Kwangwoo
论文数: 0引用数: 0
h-index: 0
机构:
Gwangju Inst Sci & Technol, Div Liberal Arts & Sci, 123 Cheomdangwagi Ro, Gwangju 61005, South KoreaUniv Tokyo, Grad Sch Math Sci, Maguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
机构:
Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, TokyoDepartment of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-shi, Tokyo
机构:
Hokkaido Univ, Fac Sci, Dept Math, Kita 10,Nishi 8,Kita-ku, Sapporo 0600810, JapanHokkaido Univ, Fac Sci, Dept Math, Kita 10,Nishi 8,Kita-ku, Sapporo 0600810, Japan