Integration of multimodal imaging data with machine learning for improved diagnosis and prognosis in neuroimaging

被引:0
作者
Bhattacharya, Saurabh [1 ]
Prusty, Sashikanta [2 ]
Pande, Sanjay P. [3 ]
Gulhane, Monali [4 ]
Lavate, Santosh H. [5 ]
Rakesh, Nitin [4 ]
Veerasamy, Saravanan [6 ]
机构
[1] Galgotias Univ, Sch Comp Sci & Engn, Greater Noida, Uttar Pradesh, India
[2] Siksha O Anusandhan Deemed Univ, Dept Comp Sci & Engn, ITER FET, Bhubaneswar, Odisha, India
[3] Yeshwantrao Chavan Coll Engn, Dept Comp Technol, Nagpur, Maharashtra, India
[4] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Nagpur Campus, Pune, India
[5] AISSMS Coll Engn, Dept Elect & Telecommun Engn, Pune, Maharashtra, India
[6] Dambi Dollo Univ, Coll Engn & Technol, Dept Comp Sci, Dambi Dollo, Oromia, Ethiopia
来源
FRONTIERS IN HUMAN NEUROSCIENCE | 2025年 / 19卷
关键词
multimodal imaging; structural MRI (sMRI); functional MRI (fMRI); neurological disorders; deep learning framework; data fusion; diagnosis and prognosis;
D O I
10.3389/fnhum.2025.1552178
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Introduction Combining many types of imaging data-especially structural MRI (sMRI) and functional MRI (fMRI)-may greatly assist in the diagnosis and treatment of brain disorders like Alzheimer's. Current approaches are less helpful for forecasting, however, as they do not always blend spatial and temporal patterns from different sources properly. This work presents a novel mixed deep learning (DL) method combining data from many sources using CNN, GRU, and attention techniques. This work introduces a novel hybrid deep learning method combining CNN, GRU, and a Dynamic Cross-Modality Attention Module to help more efficiently blend spatial and temporal brain data. Through working around issues with current multimodal fusion techniques, our approach increases the accuracy and readability of diagnoses.Methods Utilizing CNNs and models of temporal dynamics from fMRI connection measures utilizing GRUs, the proposed approach extracts spatial characteristics from sMRI. Strong multimodal integration is made possible by including an attention mechanism to give diagnostically important features top priority. Training and evaluation of the model took place using the Human Connectome Project (HCP) dataset including behavioral data, fMRI, and sMRI. Measures include accuracy, recall, precision and F1-score used to evaluate performance.Results It was correct 96.79% of the time using the combined structure. Regarding the identification of brain disorders, the proposed model was more successful than existing ones.Discussion These findings indicate that the hybrid strategy makes sense for using complimentary information from several kinds of photos. Attention to detail helped one choose which aspects to concentrate on, thereby enhancing the readability and diagnostic accuracy.Conclusion The proposed method offers a fresh benchmark for multimodal neuroimaging analysis and has great potential for use in real-world brain assessment and prediction. Researchers will investigate future applications of this technique to new picture kinds and clinical data.
引用
收藏
页数:9
相关论文
共 25 条
[1]   UNITY: A low-field magnetic resonance neuroimaging initiative to characterize neurodevelopment in low and middle-income settings [J].
Abate, F. ;
Adu-Amankwah, A. ;
Ae-Ngibise, K. A. ;
Agbokey, F. ;
Agyemang, V. A. ;
Agyemang, C. T. ;
Akgun, C. ;
Ametepe, J. ;
Arichi, T. ;
Asante, K. P. ;
Balaji, S. ;
Baljer, L. ;
Basser, P. J. ;
Beauchemin, J. ;
Bennallick, C. ;
Berhane, Y. ;
Boateng-Mensah, Y. ;
Bourke, N. J. ;
Bradford, L. ;
Bruchhage, M. M. K. ;
Lorente, R. Cano ;
Cawley, P. ;
Cercignani, M. ;
Sa, V. D. ;
de Canha, A. ;
de Navarro, N. ;
Dean, D. C., III ;
Delarosa, J. ;
Donald, K. A. ;
Dvorak, A. ;
Edwards, A. D. ;
Field, D. ;
Frail, H. ;
Freeman, B. ;
George, T. ;
Gholam, J. ;
Guerrero-Gonzalez, J. ;
Hajnal, J. V. ;
Haque, R. ;
Hollander, W. ;
Hoodbhoy, Z. ;
Huentelman, M. ;
Jafri, S. K. ;
Jones, D. K. ;
Joubert, F. ;
Karaulanov, T. ;
Kasaro, M. P. ;
Knackstedt, S. ;
Kolind, S. ;
Koshy, B. .
DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2024, 69
[2]   A proof of concept machine learning analysis using multimodal neuroimaging and neurocognitive measures as predictive biomarker in bipolar disorder [J].
Achalia, Rashmin ;
Sinha, Anannya ;
Jacob, Arpitha ;
Achalia, Garimaa ;
Kaginalkar, Varsha ;
Venkatasubramanian, Ganesan ;
Rao, Naren P. .
ASIAN JOURNAL OF PSYCHIATRY, 2020, 50
[3]  
Ali Farzana Z, 2022, Neurosci Inform, V2, DOI 10.1016/j.neuri.2022.100110
[4]   Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review [J].
Ben-Zion, Ziv ;
Korem, Nachshon ;
Fine, Naomi B. ;
Katz, Sophia ;
Siddhanta, Megha ;
Funaro, Melissa C. ;
Duek, Or ;
Spiller, Tobias R. ;
Danboeck, Sarah K. ;
Levy, Ifat ;
Harpaz-Rotem, Ilan .
BIOLOGICAL PSYCHIATRY: GLOBAL OPEN SCIENCE, 2024, 4 (01) :120-134
[5]   A multimodal neuroimaging meta-analysis of functional and structural brain abnormalities in attention-deficit/hyperactivity disorder [J].
Chen, Chao ;
Sun, Shilin ;
Chen, Ruoyi ;
Guo, Zixuan ;
Tang, Xinyue ;
Chen, Guanmao ;
Chen, Pan ;
Tang, Guixian ;
Huang, Li ;
Wang, Ying .
PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2025, 136
[6]   Exploring the potential of representation and transfer learning for anatomical neuroimaging: Application to psychiatry [J].
Dufumier, Benoit ;
Gori, Pietro ;
Petiton, Sara ;
Louiset, Robin ;
Mangin, Jean-Francois ;
Grigis, Antoine ;
Duchesnay, Edouard .
NEUROIMAGE, 2024, 296
[7]   Synthesis and evaluation of TSPO-targeting radioligand [18F]F-TFQC for PET neuroimaging in epileptic rats [J].
Fu, Wenhui ;
Lin, Qingyu ;
Fu, Zhequan ;
Yang, Tingting ;
Shi, Dai ;
Ma, Pengcheng ;
Su, Hongxing ;
Wang, Yunze ;
Liu, Guobing ;
Ding, Jing ;
Shi, Hongcheng ;
Cheng, Dengfeng .
ACTA PHARMACEUTICA SINICA B, 2025, 15 (02) :722-736
[8]   Early detection of dementia using artificial intelligence and multimodal features with a focus on neuroimaging: A systematic literature review [J].
Grigas, Ovidijus ;
Maskeliunas, Rytis ;
Damasevicius, Robertas .
HEALTH AND TECHNOLOGY, 2024, 14 (02) :201-237
[9]  
Grijalva Carissa, 2023, Brain Multiphys, V5, DOI 10.1016/j.brain.2023.100086
[10]   Advanced Parkinson's Disease Detection: A comprehensive artificial intelligence approach utilizing clinical assessment and neuroimaging samples [J].
Islam N. ;
Turza M.S.A. ;
Fahim S.I. ;
Rahman R.M. .
International Journal of Cognitive Computing in Engineering, 2024, 5 :199-220