Partial Plateau's problem with H-mass

被引:0
作者
Alvarado, Enrique [1 ]
Xia, Qinglan [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
HARMONIC MAPS; FREE-BOUNDARY; SURFACES; EXISTENCE; FLOWS;
D O I
10.1007/s00526-024-02845-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classically, Plateau's problem asks to find a surface of the least area with a given boundary B. In this article, we investigate a version of Plateau's problem, where the boundary of an admissible surface is only required to partially span B. Our boundary data is given by a flat (m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m-1)$$\end{document}-chain B and a smooth compactly supported differential (m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m-1)$$\end{document}-form Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}. We are interested in minimizing M(T)-integral partial derivative T Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textbf{M}(T) - \int _{\partial T} \Phi $$\end{document} over all m-dimensional rectifiable currents T in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} such that partial derivative T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial T$$\end{document} is a subcurrent of the given boundary B. The existence of a rectifiable minimizer is proven with Federer and Fleming's compactness theorem. We generalize this problem by replacing the mass M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{M}$$\end{document} with the H-mass of rectifiable currents. By minimizing over a larger class of objects, called scans with boundary, and by defining their H-mass as a type of lower-semicontinuous envelope over the H-mass of rectifiable currents, we prove an existence result for this problem by using Hardt and De Pauw's BV compactness theorem.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] THE PLATEAU PROBLEM FOR CONVEX CURVATURE FUNCTIONS
    Smith, Graham
    [J]. ANNALES DE L INSTITUT FOURIER, 2020, 70 (01) : 1 - 66
  • [22] ON THE ASYMPTOTIC PLATEAU PROBLEM IN HYPERBOLIC SPACE
    Lu, Siyuan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (12) : 5443 - 5451
  • [23] ON ASYMPTOTIC PLATEAU'S PROBLEM FOR CMC HYPERSURFACES ON RANK 1 SYMMETRIC SPACES OF NONCOMPACT TYPE
    Casteras, Jean-Baptiste
    Ripoll, Jaime B.
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2016, 20 (04) : 695 - 708
  • [24] Approximation methods for the Plateau-Bezier problem
    Chen, Xiao-Diao
    Xu, Gang
    Wang, Yigang
    [J]. 2009 11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2009, : 588 - 591
  • [25] On the anisotropic Kirchho ff-Plateau problem
    De Rosa, Antonio
    Lussardi, Luca
    [J]. MATHEMATICS IN ENGINEERING, 2022, 4 (02):
  • [26] Asymptotic Plateau Problem via Equidistant Hyperplanes
    Hong, Han
    Li, Haizhong
    Zhang, Meng
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (02)
  • [27] The Optimal Partial Transport Problem
    Alessio Figalli
    [J]. Archive for Rational Mechanics and Analysis, 2010, 195 : 533 - 560
  • [28] The Optimal Partial Transport Problem
    Figalli, Alessio
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 195 (02) : 533 - 560
  • [29] Solutions to the Reifenberg Plateau problem with cohomological spanning conditions
    Harrison, J.
    Pugh, H.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
  • [30] A problem on partial sums in abelian groups
    Costa, S.
    Morini, F.
    Pasotti, A.
    Pellegrini, M. A.
    [J]. DISCRETE MATHEMATICS, 2018, 341 (03) : 705 - 712