Partial Plateau's problem with H-mass

被引:0
|
作者
Alvarado, Enrique [1 ]
Xia, Qinglan [1 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词
HARMONIC MAPS; FREE-BOUNDARY; SURFACES; EXISTENCE; FLOWS;
D O I
10.1007/s00526-024-02845-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classically, Plateau's problem asks to find a surface of the least area with a given boundary B. In this article, we investigate a version of Plateau's problem, where the boundary of an admissible surface is only required to partially span B. Our boundary data is given by a flat (m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m-1)$$\end{document}-chain B and a smooth compactly supported differential (m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m-1)$$\end{document}-form Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}. We are interested in minimizing M(T)-integral partial derivative T Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textbf{M}(T) - \int _{\partial T} \Phi $$\end{document} over all m-dimensional rectifiable currents T in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} such that partial derivative T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial T$$\end{document} is a subcurrent of the given boundary B. The existence of a rectifiable minimizer is proven with Federer and Fleming's compactness theorem. We generalize this problem by replacing the mass M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{M}$$\end{document} with the H-mass of rectifiable currents. By minimizing over a larger class of objects, called scans with boundary, and by defining their H-mass as a type of lower-semicontinuous envelope over the H-mass of rectifiable currents, we prove an existence result for this problem by using Hardt and De Pauw's BV compactness theorem.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Embeddedness of the solutions to the H-Plateau problem
    Coskunuzer, Bans
    ADVANCES IN MATHEMATICS, 2017, 317 : 553 - 574
  • [2] Asymptotic H-Plateau problem in H3
    Coskunuzer, Baris
    GEOMETRY & TOPOLOGY, 2016, 20 (01) : 613 - 627
  • [3] A direct approach to Plateau's problem
    De Lellis, C.
    Ghiraldin, F.
    Maggi, F.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2017, 19 (08) : 2219 - 2240
  • [4] On the numerical solution of Plateau's problem
    Harbrecht, Helmut
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (11) : 2785 - 2800
  • [5] Soap Film Solutions to Plateau's Problem
    Harrison, J.
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 271 - 297
  • [6] Plateau's Problem as a Singular Limit of Capillarity Problems
    King, Darren
    Maggi, Francesco
    Stuvard, Salvatore
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (03) : 541 - 609
  • [7] Plateau's Problem as a Singular Limit of Capillarity Problems
    King, Darren
    Maggi, Francesco
    Stuvard, Salvatore
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2022, 75 (05) : 895 - 969
  • [8] A direct approach to Plateau's problem in any codimension
    De Philippis, G.
    De Rosa, A.
    Ghiraldin, F.
    ADVANCES IN MATHEMATICS, 2016, 288 : 59 - 80
  • [9] Plateau's Problem as a Singular Limit of Capillarity Problems
    King, Darren
    Maggi, Francesco
    Stuvard, Salvatore
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (06) : 1139 - 1207
  • [10] A direct approach to the anisotropic Plateau problem
    De Lellis, Camillo
    De Rosa, Antonio
    Ghiraldin, Francesco
    ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (02) : 211 - 223