共 50 条
Partial Plateau's problem with H-mass
被引:0
|作者:
Alvarado, Enrique
[1
]
Xia, Qinglan
[1
]
机构:
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
关键词:
HARMONIC MAPS;
FREE-BOUNDARY;
SURFACES;
EXISTENCE;
FLOWS;
D O I:
10.1007/s00526-024-02845-y
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Classically, Plateau's problem asks to find a surface of the least area with a given boundary B. In this article, we investigate a version of Plateau's problem, where the boundary of an admissible surface is only required to partially span B. Our boundary data is given by a flat (m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m-1)$$\end{document}-chain B and a smooth compactly supported differential (m-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m-1)$$\end{document}-form Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}. We are interested in minimizing M(T)-integral partial derivative T Phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textbf{M}(T) - \int _{\partial T} \Phi $$\end{document} over all m-dimensional rectifiable currents T in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>n$$\end{document} such that partial derivative T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial T$$\end{document} is a subcurrent of the given boundary B. The existence of a rectifiable minimizer is proven with Federer and Fleming's compactness theorem. We generalize this problem by replacing the mass M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{M}$$\end{document} with the H-mass of rectifiable currents. By minimizing over a larger class of objects, called scans with boundary, and by defining their H-mass as a type of lower-semicontinuous envelope over the H-mass of rectifiable currents, we prove an existence result for this problem by using Hardt and De Pauw's BV compactness theorem.
引用
收藏
页数:26
相关论文