TIMOSHENKO SYSTEM WITH INTERNAL DISSIPATION OF FRACTIONAL DERIVATIVE TYPE

被引:0
作者
de Jesus, Rafael Oliveira [1 ,3 ]
Raposo, Carlos Alberto [2 ]
Ribeiro, Joilson Oliveira [3 ]
Villagran, Octavio Vera [4 ]
机构
[1] Univ Pernambuco, Dept Math, BR-56328900 Petrolina, PE, Brazil
[2] Fed Univ Para, Fac Math, BR-68721000 Salinopolis, PA, Brazil
[3] Univ Fed Bahia, Dept Math, BR-40170110 Salvador, BA, Brazil
[4] Univ Tarapaca, Dept Math, Arica, Chile
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2025年 / 15卷 / 02期
关键词
Timoshenko system; well-posedness; polynomial stability; frac- tional derivative type damping; TRANSVERSE VIBRATIONS; STABILITY; EQUATIONS; CALCULUS;
D O I
10.11948/20240289
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript deals with the well-posedness and asymptotic behavior of the Timoshenko system with internal dissipation of fractional derivative type. We use semigroup theory. The existence and uniqueness of the solution are obtained by applying the Lumer-Phillips Theorem. We present two results for the asymptotic behavior: strong stability of the C-0-semigroup associated with the system using the Arendt-Batty and Lyubich-Vu's general criterion and the polynomial stability applying the Borichev-Tomilov's theorem. This results expand the understanding of the asymptotic behavior of Timoshenko systems with fractional internal dissipation, providing clear criteria for both strong and polynomial stability.
引用
收藏
页码:1146 / 1169
页数:24
相关论文
共 50 条
  • [21] Asymptotic Behavior in a Laminated Beams Due Interfacial Slip with a Boundary Dissipation of Fractional Derivative Type
    Tita Maryati
    Jaime Muñoz Rivera
    Verónica Poblete
    Octavio Vera
    Applied Mathematics & Optimization, 2021, 84 : 85 - 102
  • [22] About partial boundary dissipation to Timoshenko system with delay
    Ochoa Ochoa, Elena
    Gomez Avalos, Gerardo
    Munoz Rivera, Jaime E.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 9805 - 9813
  • [23] Stochastic fractional optimal control of quasi-integrable Hamiltonian system with fractional derivative damping
    Hu, F.
    Zhu, W. Q.
    Chen, L. C.
    NONLINEAR DYNAMICS, 2012, 70 (02) : 1459 - 1472
  • [24] Timoshenko system with fractional operator in the memory and spatial fractional thermal effect
    Hanni Dridi
    Abdelhak Djebabla
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 593 - 621
  • [25] New decay results for a viscoelastic-type Timoshenko system with infinite memory
    Al-Mahdi, Adel M.
    Al-Gharabli, Mohammad M.
    Guesmia, Aissa
    Messaoudi, Salim A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01):
  • [26] Stability of the Rao-Nakra Sandwich Beam With a Dissipation of Fractional Derivative Type: Theoretical and Numerical Study
    Ammari, K.
    Komornik, V.
    Sepulveda, M.
    Vera, O.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (06) : 6678 - 6690
  • [27] Timoshenko system with fractional operator in the memory and spatial fractional thermal effect
    Dridi, Hanni
    Djebabla, Abdelhak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 593 - 621
  • [28] Stability and exact controllability of a Timoshenko system with only one fractional damping on the boundary
    Akil, Mohammad
    Chitour, Yacine
    Ghader, Mouhammad
    Wehbe, Ali
    ASYMPTOTIC ANALYSIS, 2020, 119 (3-4) : 221 - 280
  • [29] Truncated Bresse-Timoshenko beam with fractional Laplacian damping
    Rosario Miranda, Luiz Gutemberg
    Raposo, Carlos Alberto
    Siqueira Cordeiro, Sebastiao Martins
    CONTRIBUTIONS TO MATHEMATICS, 2023, 8 : 1 - 10
  • [30] The optimal decay rates for viscoelastic Timoshenko type system in the light of the second spectrum of frequency
    Almeida Junior, D. S.
    Feng, B.
    Afilal, M.
    Soufyane, A.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04):