A Class of p-Valent Close-to-Convex Functions Defined Using Gegenb-auer Polynomials

被引:0
作者
Al-Rawashdeh, Waleed [1 ]
机构
[1] Zarqa Univ, Dept Math, Zarqa 13132, Jordan
来源
CONTEMPORARY MATHEMATICS | 2024年 / 5卷 / 04期
关键词
analytic functions; holomorphic functions; univalent functions; p-valent functions; principle of subordination; gegenbauer polynomials; chebyshev polynomials; coefficient estimates; fekete-szeg & ouml; inequality; BI-UNIVALENT FUNCTIONS; COEFFICIENT; SUBCLASS; BOUNDARY;
D O I
10.37256/cm.5420245414
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new class of p-valent close-to-convex functions is introduced in this paper, which is defined using Gegenbauer Polynomials within the open unit disk IID. This investigation sheds light on the properties and behaviors of these p-valent close-to-convex functions, providing estimations for the modulus of the coefficients a p +1 and a p +2 , with p being a natural number, for functions falling under this particular class. Additionally, this paper also investigates the classical Fekete-Szeg & ouml; functional problem for functions f that are part of the aforementioned class.
引用
收藏
页码:6093 / 6102
页数:10
相关论文
共 34 条
[1]  
Al-Rawashdeh Waleed, 2022, WSEAS Transactions on Mathematics, V22, P1025, DOI 10.37394/23206.2023.22.111
[2]   Fekete-Szego Functional of a Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials [J].
Al-Rawashdeh, Waleed .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01) :105-115
[3]   A Class of Non-Bazilevic Functions Subordinate to Gegenbauer Polynomials [J].
Al-Rawashdeh, Waleed .
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
[4]  
Altinkaya S., 2016, Khayyam J. Math, V1, P1, DOI DOI 10.22034/KJM.2016.13993
[5]   On the Chebyshev coefficients for a general subclass of univalent functions [J].
Altinkaya, Sahsene ;
Yalcin, Sibel .
TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) :2885-2890
[6]  
Amourah A., 2021, Palestine J. Math., V10, P625
[7]   Subclasses of bi-univalent functions subordinate to gegenbauer polynomials [J].
Amourah, Ala ;
Salleh, Zabidin ;
Frasin, B. A. ;
Khan, Muhammad Ghaffar ;
Ahmad, Bakhtiar .
AFRIKA MATEMATIKA, 2023, 34 (03)
[8]  
Brannan D.A., 1980, Aspects of contemporary complex analysis
[9]   Fekete-Szego Problem for a Subclass of Analytic Functions Associated with Chebyshev Polynomials [J].
Caglar, Murat ;
Orhan, Halit ;
Kamali, Muhammet .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
[10]   A general approach to the Fekete-Szego problem [J].
Choi, Jae Ho ;
Kim, Yong Chan ;
Sugawa, Toshiyuki .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) :707-727