Modeling Viral Capsid Assembly: A Review of Computational Strategies and Applications

被引:0
作者
Guo, Wenhan [1 ]
Alarcon, Esther [2 ]
Sanchez, Jason E. [3 ]
Xiao, Chuan [2 ,3 ]
Li, Lin [1 ,3 ]
机构
[1] Univ Texas El Paso, Dept Phys, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Dept Chem & Biochem, El Paso, TX 79968 USA
[3] Univ Texas El Paso, Dept Computat Sci, El Paso, TX 79968 USA
基金
美国国家卫生研究院;
关键词
viral capsid assembly; computational methods; molecular dynamics simulations; coarse-grained models; PROTEIN-PROTEIN INTERACTIONS; CHLOROTIC MOTTLE VIRUS; MOLECULAR-DYNAMICS; ELECTROSTATIC FEATURES; SPHERICAL VIRUSES; GIANT VIRUSES; FORCE-FIELD; SIMULATIONS; ORIGIN; CONSTRUCTION;
D O I
10.3390/cells13242088
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Viral capsid assembly is a complex and critical process, essential for understanding viral behavior, evolution, and the development of antiviral treatments, vaccines, and nanotechnology. Significant progress in studying viral capsid assembly has been achieved through various computational approaches, including molecular dynamics (MD) simulations, stochastic dynamics simulations, coarse-grained (CG) models, electrostatic analyses, lattice models, hybrid techniques, machine learning methods, and kinetic models. Each of these techniques offers unique advantages, and by integrating these diverse computational strategies, researchers can more accurately model the dynamic behaviors and structural features of viral capsids, deepening our understanding of the assembly process. This review provides a comprehensive overview of studies on viral capsid assembly, emphasizing their critical role in advancing our knowledge. It examines the contributions, strengths, and limitations of different computational methods, presents key computational works in the field, and analyzes milestone studies that have shaped current research.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] New Strategies for Integrative Dynamic Modeling of Macromolecular Assembly
    Spiga, Enrico
    Degiacomi, Matteo Thomas
    Dal Peraro, Matteo
    BIOMOLECULAR MODELLING AND SIMULATIONS, 2014, 96 : 77 - 111
  • [32] Strategies and Applications for Supramolecular Protein Self-Assembly
    Li, Yijia
    Tian, Ruizhen
    Zou, Yingping
    Wang, Tingting
    Liu, Junqiu
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (66)
  • [33] A review of computational modeling techniques in study and design of shape memory ceramics
    Zaeem, Mohsen Asle
    Zhang, Ning
    Mamivand, Mahmood
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 160 : 120 - 136
  • [34] Modeling Effects of RNA on Capsid Assembly Pathways via Coarse-Grained Stochastic Simulation
    Smith, Gregory R.
    Xie, Lu
    Schwartz, Russell
    PLOS ONE, 2016, 11 (05):
  • [35] Computational modeling of grain boundary segregation: A review
    Hu, Chongze
    Dingreville, Remi
    Boyce, Brad L.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 232
  • [36] Design of engineered nanoparticles for biomedical applications by computational modeling
    Chaparro, Diego
    Goudeli, Eirini
    NANOSCALE, 2025,
  • [37] The impact of viral RNA on the association free energies of capsid protein assembly: bacteriophage MS2 as a case study
    ElSawy, Karim M.
    JOURNAL OF MOLECULAR MODELING, 2017, 23 (02)
  • [38] Modeling the dynamics and kinetics of HIV-1 Gag during viral assembly
    Tomasini, Michael D.
    Johnson, Daniel S.
    Mincer, Joshua S.
    Simon, Sanford M.
    PLOS ONE, 2018, 13 (04):
  • [39] Membrane proteins structures: A review on computational modeling tools
    Almeida, Jose G.
    Preto, Antonio J.
    Koukos, Panagiotis I.
    Bonvin, Alexandre M. J. J.
    Moreira, Irina S.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2017, 1859 (10): : 2021 - 2039
  • [40] Computational Fluid Dynamics Modeling of Liver Radioembolization: A Review
    Aramburu, Jorge
    Anton, Raul
    Rodriguez-Fraile, Macarena
    Sangro, Bruno
    Bilbao, Jose Ignacio
    CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2022, 45 (01) : 12 - 20