Modeling Viral Capsid Assembly: A Review of Computational Strategies and Applications

被引:0
作者
Guo, Wenhan [1 ]
Alarcon, Esther [2 ]
Sanchez, Jason E. [3 ]
Xiao, Chuan [2 ,3 ]
Li, Lin [1 ,3 ]
机构
[1] Univ Texas El Paso, Dept Phys, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Dept Chem & Biochem, El Paso, TX 79968 USA
[3] Univ Texas El Paso, Dept Computat Sci, El Paso, TX 79968 USA
基金
美国国家卫生研究院;
关键词
viral capsid assembly; computational methods; molecular dynamics simulations; coarse-grained models; PROTEIN-PROTEIN INTERACTIONS; CHLOROTIC MOTTLE VIRUS; MOLECULAR-DYNAMICS; ELECTROSTATIC FEATURES; SPHERICAL VIRUSES; GIANT VIRUSES; FORCE-FIELD; SIMULATIONS; ORIGIN; CONSTRUCTION;
D O I
10.3390/cells13242088
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Viral capsid assembly is a complex and critical process, essential for understanding viral behavior, evolution, and the development of antiviral treatments, vaccines, and nanotechnology. Significant progress in studying viral capsid assembly has been achieved through various computational approaches, including molecular dynamics (MD) simulations, stochastic dynamics simulations, coarse-grained (CG) models, electrostatic analyses, lattice models, hybrid techniques, machine learning methods, and kinetic models. Each of these techniques offers unique advantages, and by integrating these diverse computational strategies, researchers can more accurately model the dynamic behaviors and structural features of viral capsids, deepening our understanding of the assembly process. This review provides a comprehensive overview of studies on viral capsid assembly, emphasizing their critical role in advancing our knowledge. It examines the contributions, strengths, and limitations of different computational methods, presents key computational works in the field, and analyzes milestone studies that have shaped current research.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Local rules for the self-assembly of a non-quasi-equivalent viral capsid
    Indelicato, Giuliana
    Cermelli, Paolo
    Twarock, Reidun
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [22] Computational Modeling of Block-Copolymer Directed Self-Assembly
    Ginzburg, Valeriy V.
    Weinhold, Jeffrey D.
    Trefonas, Peter
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2015, 53 (02) : 90 - 95
  • [23] Designing soft nanomaterials via the self assembly of functionalized icosahedral viral capsid nanoparticles
    Muthukumar, Vidyalakshmi Chockalingam
    Chong, Leebyn
    Dutt, Meenakshi
    JOURNAL OF MATERIALS RESEARCH, 2015, 30 (01) : 141 - 150
  • [24] Reversible assembly of nanoparticles: theory, strategies and computational simulations
    Gentili, Denis
    Ori, Guido
    NANOSCALE, 2022, 14 (39) : 14385 - 14432
  • [25] Rapid prediction of crucial hotspot interactions for icosahedral viral capsid self-assembly by energy landscape atlasing validated by mutagenesis
    Wu, Ruijin
    Prabhu, Rahul
    Ozkan, Aysegul
    Sitharam, Meera
    PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (10)
  • [26] A Review on Applications of Computational Methods in Drug Screening and Design
    Lin, Xiaoqian
    Li, Xiu
    Lin, Xubo
    MOLECULES, 2020, 25 (06):
  • [27] Computational Strategies for Entropy Modeling in Chemical Processes
    Shin, Wook
    Yang, Zhongyue J.
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (09)
  • [28] Self-Assembly of Viral Capsid Protein and RNA Molecules of Different Sizes: Requirement for a Specific High Protein/RNA Mass Ratio
    Cadena-Nava, Ruben D.
    Comas-Garcia, Mauricio
    Garmann, Rees F.
    Rao, A. L. N.
    Knobler, Charles M.
    Gelbart, William M.
    JOURNAL OF VIROLOGY, 2012, 86 (06) : 3318 - 3326
  • [29] Computational Modeling of the Virucidal Inhibition Mechanism for Broad-Spectrum Antiviral Nanoparticles and HPV16 Capsid Segments
    Chaturvedi, Parth
    Kelich, Payam
    Nitka, Tara A.
    Vukovic, Lela
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (48) : 13122 - 13131
  • [30] Protein assembly: Controllable design strategies and applications in biology
    Li, Yijia
    Tian, Ruizhen
    Shi, Haolu
    Xu, Jiayun
    Wang, Tingting
    Liu, Junqiu
    AGGREGATE, 2023, 4 (03):