Source-Free Domain Adaptation for Optical Music Recognition

被引:1
作者
Rosello, Adrian [1 ]
Fuentes-Martinez, Eliseo [1 ]
Alfaro-Contreras, Maria [1 ]
Rizo, David [1 ,2 ]
Calvo-Zaragoza, Jorge [1 ]
机构
[1] Univ Alicante, Pattern Recognit & Artificial Intelligence Grp, San Vicente Del Raspeig, Spain
[2] Inst Super Ensenanzas Artist Comunidad Valenciana, Valencia, Spain
来源
DOCUMENT ANALYSIS AND RECOGNITION-ICDAR 2024, PT VI | 2024年 / 14809卷
关键词
Optical Music Recognition; Domain Adaptation; Source-Free Domain Adaptation;
D O I
10.1007/978-3-031-70552-6_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses the problem of Domain Adaptation (DA) in the context of staff-level end-to-end Optical Music Recognition. Specifically, we consider a source-free DA approach to adapt a given trained model to a new collection-an extremely useful scenario for preserving musical heritage. The method involves re-training the pre-trained model to align the statistics stored from the original data in normalization layers with those of the new collection, while also including a regularization mechanism to prevent the model from converging to undesirable solutions. Unlike conventional DA techniques, this approach is very efficient and practical, as it only requires the pre-trained model and unlabeled data from the new collection, without relying on data from the original training collections (i.e., source-free). Evaluation of diverse music collections in Mensural notation and a synthetic-to-real scenario of common Western modern notation demonstrates consistent improvements over the baseline (no DA), often with remarkable relative improvements.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 27 条
[1]  
Alfaro-Contreras M., 2024, Align. A Source-Free Unsupervised Domain Adaptation Method for Handwritten Text Recognition, Minimize and Diversify
[2]   Decoupling music notation to improve end-to-end Optical Music Recognition [J].
Alfaro-Contreras, Maria ;
Rios-Vila, Antonio ;
Valero-Mas, Jose J. ;
Inesta, Jose M. ;
Calvo-Zaragoza, Jorge .
PATTERN RECOGNITION LETTERS, 2022, 158 :157-163
[3]   Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism [J].
Baro, Arnau ;
Badal, Carles ;
Fornes, Alicia .
2020 17TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR 2020), 2020, :205-210
[4]   Understanding Optical Music Recognition [J].
Calvo-Zaragoza, Jorge ;
Hajic, Jan, Jr. ;
Pacha, Alexander .
ACM COMPUTING SURVEYS, 2020, 53 (04)
[5]   Handwritten Music Recognition for Mensural notation with convolutional recurrent neural networks [J].
Calvo-Zaragoza, Jorge ;
Toselli, Alejandro H. ;
Vidal, Enrique .
PATTERN RECOGNITION LETTERS, 2019, 128 :115-121
[6]   End-to-End Neural Optical Music Recognition of Monophonic Scores [J].
Calvo-Zaragoza, Jorge ;
Rizo, David .
APPLIED SCIENCES-BASEL, 2018, 8 (04)
[7]  
Calvo-Zaragoza Jorge., 2018, Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), P248, DOI [10.5281/zenodo.1492395, DOI 10.3390/APP8040606]
[8]  
Castellanos F. J., 2021, 22 INT SOC MUS INF R, P81
[9]   Domain adaptation for staff-region retrieval of music score images [J].
Castellanos, Francisco J. ;
Javier Gallego, Antonio ;
Calvo-Zaragoza, Jorge ;
Fujinaga, Ichiro .
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2022, 25 (04) :281-292
[10]  
Graves A., 2006, P 23 INT C MACHINE L, P369, DOI [DOI 10.1145/1143844.1143891, 10.1145/1143844.1143891]