Improved Structure-Based Histidine pK a Prediction for pH-Responsive Protein Design

被引:0
作者
Hogues, Herve [1 ]
Wei, Wanlei [1 ]
Sulea, Traian [1 ]
机构
[1] Natl Res Council Canada, Human Hlth Therapeut Res Ctr, Montreal, PQ H4P 2R2, Canada
关键词
INTERACTION ENERGY SIE; HYDROPHOBIC INTERIOR; PK(A) VALUES; TITRATION; RESIDUES; RECOGNITION;
D O I
10.1021/acs.jcim.4c01957
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The near neutral pK a of histidine is commonly exploited to engineer pH-sensitive biomolecules. For example, histidine mutations introduced in the complementarity-determining region (CDR) of therapeutic antibodies can enhance selectivity for antigens in the acidic microenvironment of solid tumors or increase dissociation rates in the acidic early endosomes of cells. While solvent-exposed histidines typically have a pK a near 6.5, interacting histidines can experience pK a shifts of up to 4 pH units in either direction, making histidine one of the most variable titratable residues. To assist in selecting potential histidine mutation sites, pK a prediction software should achieve an accuracy significantly better than the current standard of around 1.0 pH unit. However, the limited availability of experimental histidine pK a measurements hinders the use of AI-based methods. This study evaluates histidine pK a predictions using Amber force field electrostatics combined with a continuum solvent model, previously calibrated in the solvated interaction energy (SIE) function for binding affinity predictions. By incorporating limited rotameric sampling, proton optimization, and an empirical correction for buried side-chains, the method achieves a mean unsigned error of 0.4 pH units across a diverse set of 91 histidines from 38 distinct protein structures obtained from the PKAD database. This approach should improve the in-silico design of pH-responsive mutations. The method is implemented in the software program JustHISpKa (https://mm.nrc-cnrc.gc.ca/software/JustHISpKa).
引用
收藏
页码:1560 / 1569
页数:10
相关论文
共 48 条
[1]   pKa Calculations with the Polarizable Drude Force Field and Poisson-Boltzmann Solvation Model [J].
Aleksandrov, Alexey ;
Roux, Benoit ;
MacKerell, Alexander D., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2020, 16 (07) :4655-4668
[2]   Progress in the prediction of pKa values in proteins [J].
Alexov, Emil ;
Mehler, Ernest L. ;
Baker, Nathan ;
Baptista, Antonio M. ;
Huang, Yong ;
Milletti, Francesca ;
Nielsen, Jens Erik ;
Farrell, Damien ;
Carstensen, Tommy ;
Olsson, Mats H. M. ;
Shen, Jana K. ;
Warwicker, Jim ;
Williams, Sarah ;
Word, J. Michael .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (12) :3260-3275
[3]  
Ancona N, 2023, J COMPUT BIOPHYS CHE, V22, P515, DOI [10.1142/S2737416523500230, 10.1142/s2737416523500230]
[4]   Analysis of catalytic residues in enzyme active sites [J].
Bartlett, GJ ;
Porter, CT ;
Borkakoti, N ;
Thornton, JM .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 324 (01) :105-121
[5]   PKAS OF IONIZABLE GROUPS IN PROTEINS - ATOMIC DETAIL FROM A CONTINUUM ELECTROSTATIC MODEL [J].
BASHFORD, D ;
KARPLUS, M .
BIOCHEMISTRY, 1990, 29 (44) :10219-10225
[6]   MULTIPLE-SITE TITRATION CURVES OF PROTEINS - AN ANALYSIS OF EXACT AND APPROXIMATE METHODS FOR THEIR CALCULATION [J].
BASHFORD, D ;
KARPLUS, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (23) :9556-9561
[7]   RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences [J].
Burley, Stephen K. ;
Bhikadiya, Charmi ;
Bi, Chunxiao ;
Bittrich, Sebastian ;
Chen, Li ;
Crichlow, Gregg, V ;
Christie, Cole H. ;
Dalenberg, Kenneth ;
Di Costanzo, Luigi ;
Duarte, Jose M. ;
Dutta, Shuchismita ;
Feng, Zukang ;
Ganesan, Sai ;
Goodsell, David S. ;
Ghosh, Sutapa ;
Green, Rachel Kramer ;
Guranovic, Vladimir ;
Guzenko, Dmytro ;
Hudson, Brian P. ;
Lawson, Catherine L. ;
Liang, Yuhe ;
Lowe, Robert ;
Namkoong, Harry ;
Peisach, Ezra ;
Persikova, Irina ;
Randle, Chris ;
Rose, Alexander ;
Rose, Yana ;
Sali, Andrej ;
Segura, Joan ;
Sekharan, Monica ;
Shao, Chenghua ;
Tao, Yi-Ping ;
Voigt, Maria ;
Westbrook, John D. ;
Young, Jasmine Y. ;
Zardecki, Christine ;
Zhuravleva, Marina .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D437-D451
[8]   Basis for Accurate Protein pKa Prediction with Machine Learning [J].
Cai, Zhitao ;
Liu, Tengzi ;
Lin, Qiaoling ;
He, Jiahao ;
Lei, Xiaowei ;
Luo, Fangfang ;
Huang, Yandong .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (10) :2936-2947
[9]   Protein pKa Prediction with Machine Learning [J].
Cai, Zhitao ;
Luo, Fangfang ;
Wang, Yongxian ;
Li, Enling ;
Huang, Yandong .
ACS OMEGA, 2021, 6 (50) :34823-34831
[10]   Molecular determinants of the pKa values of Asp and Glu residues in staphylococcal nuclease [J].
Castaneda, Carlos A. ;
Fitch, Carolyn A. ;
Majumdar, Ananya ;
Khangulov, Victor ;
Schlessman, Jamie L. ;
Garcia-Moreno, Bertrand E. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2009, 77 (03) :570-588