Deployment of Artificial Intelligence in Radiology: Strategies for Success

被引:3
作者
Jiang, Sirui [1 ]
Bukhari, Syed M. A. [1 ]
Krishnan, Arjun [2 ]
Bera, Kaustav [1 ]
Sharma, Avishkar [3 ]
Caovan, Danielle [1 ]
Rosipko, Beverly [1 ]
Gupta, Amit [1 ]
机构
[1] Univ Hosp Cleveland Med Ctr, Dept Radiol, 11100 Euclid Ave, Cleveland, OH 44106 USA
[2] Cleveland State Univ, Dept Biol, Cleveland, OH USA
[3] Jefferson Einstein Philadelphia Hosp, Dept Radiol, Philadelphia, PA USA
关键词
artificial intelligence; clinical challenges; integration; radiology; validation; EXTERNAL VALIDITY; VALIDATION; MODELS;
D O I
10.2214/AJR.24.31898
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Radiology, as a highly technical and information-rich medical specialty, is well suited for artificial intelligence (AI) product development, and many U.S. FDA-cleared AI medical devices are authorized for uses within the specialty. In this Clinical Perspective, we discuss the deployment of AI tools in radiology, exploring regulatory processes, the need for transparency, and other practical challenges. We further highlight the importance of rigorous validation, real-world testing, seamless workflow integration, and end user education. We emphasize the role for continuous feedback and robust monitoring processes, to guide AI tools' adaptation and help ensure sustained performance. Traditional standalone and alternative platform-based approaches to radiology AI implementation are considered. The presented strategies will help achieve successful deployment and fully realize AI's potential benefits in radiology.
引用
收藏
页数:11
相关论文
共 55 条
[31]   Why imaging data alone is not enough: AI-based integration of imaging, omics, and clinical data [J].
Holzinger, Andreas ;
Haibe-Kains, Benjamin ;
Jurisica, Igor .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (13) :2722-2730
[32]   Artificial intelligence in radiology [J].
Hosny, Ahmed ;
Parmar, Chintan ;
Quackenbush, John ;
Schwartz, Lawrence H. ;
Aerts, Hugo J. W. L. .
NATURE REVIEWS CANCER, 2018, 18 (08) :500-510
[33]  
Khalifa M., 2024, Comput Methods Programs Biomed Update, V5, P100146, DOI [10.1016/j.cmpbup.2024.100146, DOI 10.1016/J.CMPBUP.2024.100146]
[34]   Clinical, Cultural, Computational, and Regulatory Considerations to Deploy AI in Radiology: Perspectives of RSNA and MICCAI Experts [J].
Linguraru, Marius George ;
Bakas, Spyridon ;
Aboian, Mariam ;
Chang, Peter D. ;
Flanders, Adam E. ;
Kalpathy-Cramer, Jayashree ;
Kitamura, Felipe C. ;
Lungren, Matthew P. ;
Mongan, John ;
Prevedello, Luciano M. ;
Summers, Ronald M. ;
Wu, Carol C. ;
Adewole, Maruf ;
Kahn Jr, Charles E. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (04)
[35]   Data Integration Challenges for Machine Learning in Precision Medicine [J].
Martinez-Garcia, Mireya ;
Hernandez-Lemus, Enrique .
FRONTIERS IN MEDICINE, 2022, 8
[36]   A short guide for medical professionals in the era of artificial intelligence [J].
Mesko, Bertalan ;
Gorog, Marton .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[37]   Artificial Intelligence for the Future Radiology Diagnostic Service [J].
Mun, Seong K. ;
Wong, Kenneth H. ;
Lo, Shih-Chung B. ;
Li, Yanni ;
Bayarsaikhan, Shijir .
FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 7
[38]   Redefining Radiology: A Review of Artificial Intelligence Integration in Medical Imaging [J].
Najjar, Reabal .
DIAGNOSTICS, 2023, 13 (17)
[39]   To buy or not to buy-evaluating commercial AI solutions in radiology (the ECLAIR guidelines) [J].
Omoumi, Patrick ;
Ducarouge, Alexis ;
Tournier, Antoine ;
Harvey, Hugh ;
Kahn, Charles E., Jr. ;
Louvet-de Verchere, Fanny ;
Pinto Dos Santos, Daniel ;
Kober, Tobias ;
Richiardi, Jonas .
EUROPEAN RADIOLOGY, 2021, 31 (06) :3786-3796
[40]   Artificial intelligence and algorithmic bias: implications for health systems [J].
Panch, Trishan ;
Mattie, Heather ;
Atun, Rifat .
JOURNAL OF GLOBAL HEALTH, 2019, 9 (02)