Advancing Graphene Synthesis: Low-Temperature Growth and Hydrogenation Mechanisms Using Plasma-Enhanced Chemical Vapor Deposition

被引:0
|
作者
Meskinis, Sarunas [1 ]
Lazauskas, Algirdas [1 ]
Jankauskas, Sarunas [1 ]
Guobiene, Asta [1 ]
Gudaitis, Rimantas [1 ]
机构
[1] Kaunas Univ Technol, Inst Mat Sci, K Barsausko 59, LT-51423 Kaunas, Lithuania
来源
MOLECULES | 2025年 / 30卷 / 01期
关键词
PECVD; graphene synthesis; low-temperature growth; hydrogenated graphene; REVERSIBLE HYDROGENATION; VERTICAL GRAPHENE; RAMAN; CARBON; IDENTIFICATION;
D O I
10.3390/molecules30010033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study explores the low-temperature synthesis of graphene using plasma-enhanced chemical vapor deposition (PECVD), emphasizing the optimization of process parameters to achieve controlled growth of pristine and hydrogenated graphene. Graphene films were synthesized at temperatures ranging from 700 degrees C to as low as 400 degrees C by varying methane (25-100 sccm) and hydrogen (25-100 sccm) gas flow rates under 10-20 mBar pressures. Raman spectroscopy revealed structural transitions: pristine graphene grown at 700 degrees C exhibited strong 2D peaks with an I(2D)/I(G) ratio > 2, while hydrogenated graphene synthesized at 500 degrees C showed increased defect density with an I(D)/I(G) ratio of similar to 1.5 and reduced I(2D)/I(G) (similar to 0.8). At 400 degrees C, the material transitioned to a highly hydrogenated amorphous carbon film, confirmed by photoluminescence (PL) in the Raman spectra. Atomic force microscopy (AFM) showed pristine graphene with a root mean square roughness (R-q) of 0.37 nm. By carefully adjusting PECVD synthesis parameters, it was possible to tune the surface roughness of hydrogenated graphene to levels close to that of pristine graphene or to achieve even smoother surfaces. Conductive AFM measurements revealed that hydrogenation could enhance graphene's contact current under specific conditions. The findings highlight the role of PECVD parameters in tailoring graphene's structural, morphological, and electronic properties for diverse applications. This work demonstrates a scalable, low-temperature approach to graphene synthesis, offering the potential for energy storage, sensing, and electronic devices requiring customized material properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] SYNTHESIS OF CARBON NANOSTRUCTURES BY PLASMA-ENHANCED CHEMICAL VAPOR DEPOSITION USING CATALYST STRUCTURES
    Grigonis, Alfonsas
    Blauzdziunas, Giedrius
    Cernauskas, Marius
    RADIATION INTERACTION WITH MATERIAL AND ITS USE IN TECHNOLOGIES 2012, 2012, : 455 - 458
  • [32] Copper-Assisted Direct Growth of Vertical Graphene Nanosheets on Glass Substrates by Low-Temperature Plasma-Enhanced Chemical Vapour Deposition Process
    Ma, Yifei
    Jang, Haegyu
    Kim, Sun Jung
    Pang, Changhyun
    Chae, Heeyeop
    NANOSCALE RESEARCH LETTERS, 2015, 10
  • [33] Metal-free plasma-enhanced chemical vapor deposition of large area nanocrystalline graphene
    Schmidt, Marek E.
    Xu, Cigang
    Cooke, Mike
    Mizuta, Hiroshi
    Chong, Harold M. H.
    MATERIALS RESEARCH EXPRESS, 2014, 1 (02)
  • [34] Copper-Assisted Direct Growth of Vertical Graphene Nanosheets on Glass Substrates by Low-Temperature Plasma-Enhanced Chemical Vapour Deposition Process
    Yifei Ma
    Haegyu Jang
    Sun Jung Kim
    Changhyun Pang
    Heeyeop Chae
    Nanoscale Research Letters, 2015, 10
  • [35] Microwave plasma-enhanced chemical vapor deposition growth of graphene nanowalls on varied substrates: A comparative study
    Zhu, Rucheng
    Vishwakarma, Riteshkumar
    Li, Haibin
    Yao, Dequan
    Umeno, Masayoshi
    Soga, Tetsuo
    INTERNATIONAL JOURNAL OF NANOELECTRONICS AND MATERIALS, 2025, 18 (01): : 47 - 53
  • [36] Growth of plasma-enhanced chemical vapour deposition and hot filament plasma-enhanced chemical vapour deposition transfer-free graphene using a nickel catalyst
    Othman, Maisara
    Ritikos, Richard
    Rahman, Saadah Abdul
    THIN SOLID FILMS, 2019, 685 : 335 - 342
  • [37] Low-temperature growth of AIN thin films by plasma-enhanced atomic layer deposition
    Feng Jia-Heng
    Tang Li-Dan
    Liu Bang-Wu
    Xia Yang
    Wang Bing
    ACTA PHYSICA SINICA, 2013, 62 (11)
  • [38] Room Temperature Deposition of Silicon Nanodot Clusters by Plasma-Enhanced Chemical Vapor Deposition
    Kim, Jae-Kwan
    Kim, Jun Young
    Yoon, Jae-Sik
    Lee, Ji-Myon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (10) : 7173 - 7176
  • [39] Room-temperature plasma-enhanced chemical vapor deposition of SiOCH films using tetraethoxysilane
    Yamaoka, K
    Yoshizako, Y
    Kato, H
    Tsukiyama, D
    Terai, Y
    Fujiwara, Y
    PHYSICA B-CONDENSED MATTER, 2006, 376 : 399 - 402
  • [40] Monitoring of the growth of microcrystalline silicon by plasma-enhanced chemical vapor deposition using in-situ Raman spectroscopy
    Muthmann, S.
    Koehler, F.
    Meier, M.
    Huelsbeck, M.
    Carius, R.
    Gordijn, A.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (04): : 144 - 146