Advancing Graphene Synthesis: Low-Temperature Growth and Hydrogenation Mechanisms Using Plasma-Enhanced Chemical Vapor Deposition

被引:0
|
作者
Meskinis, Sarunas [1 ]
Lazauskas, Algirdas [1 ]
Jankauskas, Sarunas [1 ]
Guobiene, Asta [1 ]
Gudaitis, Rimantas [1 ]
机构
[1] Kaunas Univ Technol, Inst Mat Sci, K Barsausko 59, LT-51423 Kaunas, Lithuania
来源
MOLECULES | 2025年 / 30卷 / 01期
关键词
PECVD; graphene synthesis; low-temperature growth; hydrogenated graphene; REVERSIBLE HYDROGENATION; VERTICAL GRAPHENE; RAMAN; CARBON; IDENTIFICATION;
D O I
10.3390/molecules30010033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study explores the low-temperature synthesis of graphene using plasma-enhanced chemical vapor deposition (PECVD), emphasizing the optimization of process parameters to achieve controlled growth of pristine and hydrogenated graphene. Graphene films were synthesized at temperatures ranging from 700 degrees C to as low as 400 degrees C by varying methane (25-100 sccm) and hydrogen (25-100 sccm) gas flow rates under 10-20 mBar pressures. Raman spectroscopy revealed structural transitions: pristine graphene grown at 700 degrees C exhibited strong 2D peaks with an I(2D)/I(G) ratio > 2, while hydrogenated graphene synthesized at 500 degrees C showed increased defect density with an I(D)/I(G) ratio of similar to 1.5 and reduced I(2D)/I(G) (similar to 0.8). At 400 degrees C, the material transitioned to a highly hydrogenated amorphous carbon film, confirmed by photoluminescence (PL) in the Raman spectra. Atomic force microscopy (AFM) showed pristine graphene with a root mean square roughness (R-q) of 0.37 nm. By carefully adjusting PECVD synthesis parameters, it was possible to tune the surface roughness of hydrogenated graphene to levels close to that of pristine graphene or to achieve even smoother surfaces. Conductive AFM measurements revealed that hydrogenation could enhance graphene's contact current under specific conditions. The findings highlight the role of PECVD parameters in tailoring graphene's structural, morphological, and electronic properties for diverse applications. This work demonstrates a scalable, low-temperature approach to graphene synthesis, offering the potential for energy storage, sensing, and electronic devices requiring customized material properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Synthesis of Carbon Nanowall by Plasma-Enhanced Chemical Vapor Deposition Method
    Liu, Rulin
    Chi, Yaqing
    Fang, Liang
    Tang, Zhensen
    Yi, Xun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2014, 14 (02) : 1647 - 1657
  • [22] Low-temperature plasma-enhanced chemical vapour deposition of transfer-free graphene thin films
    Othman, Maisara
    Ritikos, Richard
    Hafiz, Syed Muhammad
    Khanis, Noor Hamizah
    Rashid, Nur Maisarah Abdul
    Rahman, Saadah Abdul
    MATERIALS LETTERS, 2015, 158 : 436 - 438
  • [23] Growth of carbon nanotubes by plasma-enhanced chemical vapor deposition
    Sato, Hideki
    Hata, Koichi
    NEW DIAMOND AND FRONTIER CARBON TECHNOLOGY, 2006, 16 (03): : 163 - 176
  • [24] Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature
    Barankin, M. D.
    Gonzalez, E., II
    Ladwig, A. M.
    Hicks, R. F.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (10) : 924 - 930
  • [25] Carbon nanotubes by plasma-enhanced chemical vapor deposition
    Bell, Martin S.
    Teo, Kenneth B. K.
    Lacerda, Rodrigo G.
    Milne, W. I.
    Hash, David B.
    Meyyappan, M.
    PURE AND APPLIED CHEMISTRY, 2006, 78 (06) : 1117 - 1125
  • [26] Synthesis of graphene on a Ni film by radio-frequency plasma-enhanced chemical vapor deposition
    QI JunLei 1
    2 Department of Materials Science
    Science Bulletin, 2012, (23) : 3040 - 3044
  • [27] Low-Temperature Growth of Graphene by Chemical Vapor Deposition Using Solid and Liquid Carbon Sources
    Li, Zhancheng
    Wu, Ping
    Wang, Chenxi
    Fan, Xiaodong
    Zhang, Wenhua
    Zhai, Xiaofang
    Zeng, Changgan
    Li, Zhenyu
    Yang, Jinlong
    Hou, Jianguo
    ACS NANO, 2011, 5 (04) : 3385 - 3390
  • [28] Synthesis of graphene on a Ni film by radio-frequency plasma-enhanced chemical vapor deposition
    Qi JunLei
    Zhang LiXia
    Cao Jian
    Zheng WeiTao
    Wang Xin
    Feng JiCai
    CHINESE SCIENCE BULLETIN, 2012, 57 (23): : 3040 - 3044
  • [29] Tuning the electronic properties of graphene by hydrogenation in a plasma enhanced chemical vapor deposition reactor
    Burgess, James S.
    Matis, Bernard R.
    Robinson, Jeremy T.
    Bulat, Felipe A.
    Perkins, F. Keith
    Houston, Brian H.
    Baldwin, Jeffrey W.
    CARBON, 2011, 49 (13) : 4420 - 4426
  • [30] Effect of catalyst on growth of diamond by plasma-enhanced chemical vapor deposition
    Zare K.
    Malkeshi M.A.
    Journal of Nanostructure in Chemistry, 2013, 3 (1)