Advancing Graphene Synthesis: Low-Temperature Growth and Hydrogenation Mechanisms Using Plasma-Enhanced Chemical Vapor Deposition

被引:0
|
作者
Meskinis, Sarunas [1 ]
Lazauskas, Algirdas [1 ]
Jankauskas, Sarunas [1 ]
Guobiene, Asta [1 ]
Gudaitis, Rimantas [1 ]
机构
[1] Kaunas Univ Technol, Inst Mat Sci, K Barsausko 59, LT-51423 Kaunas, Lithuania
来源
MOLECULES | 2025年 / 30卷 / 01期
关键词
PECVD; graphene synthesis; low-temperature growth; hydrogenated graphene; REVERSIBLE HYDROGENATION; VERTICAL GRAPHENE; RAMAN; CARBON; IDENTIFICATION;
D O I
10.3390/molecules30010033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study explores the low-temperature synthesis of graphene using plasma-enhanced chemical vapor deposition (PECVD), emphasizing the optimization of process parameters to achieve controlled growth of pristine and hydrogenated graphene. Graphene films were synthesized at temperatures ranging from 700 degrees C to as low as 400 degrees C by varying methane (25-100 sccm) and hydrogen (25-100 sccm) gas flow rates under 10-20 mBar pressures. Raman spectroscopy revealed structural transitions: pristine graphene grown at 700 degrees C exhibited strong 2D peaks with an I(2D)/I(G) ratio > 2, while hydrogenated graphene synthesized at 500 degrees C showed increased defect density with an I(D)/I(G) ratio of similar to 1.5 and reduced I(2D)/I(G) (similar to 0.8). At 400 degrees C, the material transitioned to a highly hydrogenated amorphous carbon film, confirmed by photoluminescence (PL) in the Raman spectra. Atomic force microscopy (AFM) showed pristine graphene with a root mean square roughness (R-q) of 0.37 nm. By carefully adjusting PECVD synthesis parameters, it was possible to tune the surface roughness of hydrogenated graphene to levels close to that of pristine graphene or to achieve even smoother surfaces. Conductive AFM measurements revealed that hydrogenation could enhance graphene's contact current under specific conditions. The findings highlight the role of PECVD parameters in tailoring graphene's structural, morphological, and electronic properties for diverse applications. This work demonstrates a scalable, low-temperature approach to graphene synthesis, offering the potential for energy storage, sensing, and electronic devices requiring customized material properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Low-temperature growth of carbon nanotube by plasma-enhanced chemical vapor deposition using nickel catalyst
    Ryu, KM
    Kang, MY
    Kim, YD
    Jeon, HT
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (6A): : 3578 - 3581
  • [2] Low-temperature growth of carbon nanotube by plasma-enhanced chemical vapor deposition using nickel catalyst
    Ryu, Kyoungmin
    Kang, Mihyun
    Kim, Yangdo
    Jeon, Heyongtag
    Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2003, 42 (6 A): : 3578 - 3581
  • [3] Low-Temperature Epitaxial Growth by Quiescent Plasma-Enhanced Chemical Vapor Deposition at Atmospheric Pressure
    Song, Chang-Hun
    Ryu, Hwa-Yeon
    Oh, Hoonjung
    Baik, Seung Jae
    Ko, Dae-Hong
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2022, 11 (12)
  • [4] Growth Mechanism of Multi-Layer Graphene at Low-Temperature by Plasma Enhanced Chemical Vapor Deposition
    Yun, Kayoung
    Cheang, Dasol
    Hyun, Jiyeon
    Roh, Aeran
    Heo, Sun
    Cheng, Lanxia
    Kim, Jiyoung
    Cha, Pil-Ryung
    Lee, Jagab
    Nam, Ho-Seok
    KOREAN JOURNAL OF METALS AND MATERIALS, 2015, 53 (11): : 820 - 826
  • [5] Low-temperature growth of carbon nanotubes by grid-inserted plasma-enhanced chemical vapor deposition
    Kojima, Yoshihiro
    Kishimoto, Shigeru
    Mizutani, Takashi
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2007, 46 (12): : 8000 - 8002
  • [6] Boron nitride nanowalls: low-temperature plasma-enhanced chemical vapor deposition synthesis and optical properties
    Merenkov, Ivan S.
    Kosinova, Marina L.
    Maximovskii, Eugene A.
    NANOTECHNOLOGY, 2017, 28 (18)
  • [7] Low-temperature synthesis of diamond films by photoemission-assisted plasma-enhanced chemical vapor deposition
    Kawata, Mayuri
    Ojiro, Yoshihiro
    Ogawa, Shuichi
    Masuzawa, Tomoaki
    Okano, Ken
    Takakuwa, Yuji
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2014, 32 (02):
  • [8] Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition
    Choi, YC
    Bae, DJ
    Lee, YH
    Lee, BS
    Han, IT
    Choi, WB
    Lee, NS
    Kim, JM
    SYNTHETIC METALS, 2000, 108 (02) : 159 - 163
  • [9] Vertical graphene by plasma-enhanced chemical vapor deposition: Correlation of plasma conditions and growth characteristics
    Sandoz-Rosado, Emil
    Page, William
    O'Brien, David
    Przepioski, Joshua
    Mo, Dennis
    Wang, Benjamin
    Ngo-Duc, Tam-Triet
    Gacusan, Jovi
    Winter, Michael W.
    Meyyappan, M.
    Cormia, Robert D.
    Takahashi, Shuhei
    Oyea, Michael M.
    JOURNAL OF MATERIALS RESEARCH, 2014, 29 (03) : 417 - 425
  • [10] Recent Advances in the Low-Temperature Chemical Vapor Deposition Growth of Graphene
    Josline, Mukkath Joseph
    Kim, Eui-Tae
    Lee, Jae-Hyun
    APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, 2022, 31 (03): : 63 - 70