Thermal control and process optimization in methane partial oxidation with CO2 addition in catalytic membrane reactor

被引:1
作者
Zavyalov, M. A. [1 ]
Markov, A. A. [1 ]
Patrakeev, M. V. [1 ,2 ]
Merkulov, O. V. [1 ]
机构
[1] RAS, UB, Inst Solid State Chem, Ekaterinburg 620990, Russia
[2] RAS, Osipyan Inst Solid State Phys, Moscow 142432, Russia
关键词
Oxygen membrane; Ferrite; Partial oxidation of methane; Carbon dioxide reforming; Syngas production; Thermodynamic modeling; OXYGEN SEPARATION; COPRODUCTION; EQUILIBRIUM; HYDROGEN; SYNGAS;
D O I
10.1016/j.memsci.2025.123748
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work examines the influence of carbon dioxide on the partial oxidation of methane (POM) in a catalytic reactor equipped with a La0.5Sr0.5Fe0.9Mo0.1O3-delta membrane. A combined modeling approach using Gibbs energy minimization and the Wagner equation was employed to predict the thermal behavior and oxygen flux under varying flows of methane and CO2. The experimental results confirmed that adding CO2 reduces heat release in the reaction zone, improves thermal stability control, and helps maintain membrane integrity. The use of CO2 as a carrier gas in the reactor start-up mode was shown to improve the controllability of a targeted increase in the oxygen partial pressure gradient across the membrane, thereby reducing mechanical stress in it. Under operating conditions, although CO2 addition reduces CO selectivity slightly, it was shown that optimizing methane flow restores high selectivity levels (>90 %) while ensuring more stable thermal conditions. These findings suggest that CO2 addition, along with methane flow regulation, offers an efficient solution to improving both the thermal management and operational reliability of mixed ionic-electronic conducting membrane reactors.
引用
收藏
页数:10
相关论文
共 38 条
[1]   Thermodynamic equilibrium analysis of combined carbon dioxide reforming with partial oxidation of methane to syngas [J].
Amin, Nor Aishah Saidina ;
Yaw, Tung Chun .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (12) :1789-1798
[2]   Advances in ion transport membrane technology for oxygen and syngas production [J].
Anderson, Lori L. ;
Armstrong, Phillip A. ;
Broekhuis, Robert R. ;
Carolan, Michael F. ;
Chen, Jack ;
Hutcheon, Mark D. ;
Lewinsohn, Charles A. ;
Miller, Christopher F. ;
Repasky, John M. ;
Taylor, Dale M. ;
Woods, Charles M. .
SOLID STATE IONICS, 2016, 288 :331-337
[3]  
Armstrong P.A., 2004, P GAS TECHN C DC US
[4]   A mathematical model for initial design iterations and feasibility studies of oxygen membrane reactors by minimizing Gibbs free energy [J].
Bittner, Kai ;
Margaritis, Nikolaos ;
Schulze-Kueppers, Falk ;
Wolters, Joerg ;
Natour, Ghaleb .
JOURNAL OF MEMBRANE SCIENCE, 2023, 685
[5]   Mo-doped La0.4Sr0.6FeO3-8 hollow fiber membrane for air separation and methane conversion [J].
Bragina, O. A. ;
Shubnikova, E. V. ;
Arapova, M. V. ;
Nemudry, A. P. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (14)
[6]  
Burggraaf A.J., 1981, Berichte Der Bunsengesellschaft Fr Phys. Chemie, V85, P1084, DOI 10.1002bbpc.19810851138
[7]   Roadmap on Sustainable Mixed Ionic-Electronic Conducting Membranes [J].
Chen, Guoxing ;
Feldhoff, Armin ;
Weidenkaff, Anke ;
Li, Claudia ;
Liu, Shaomin ;
Zhu, Xuefeng ;
Sunarso, Jaka ;
Huang, Kevin ;
Wu, Xiao-Yu ;
Ghoniem, Ahmed F. ;
Yang, Weishen ;
Xue, Jian ;
Wang, Haihui ;
Shao, Zongping ;
Duffy, Jack H. ;
Brinkman, Kyle S. ;
Tan, Xiaoyao ;
Zhang, Yan ;
Jiang, Heqing ;
Costa, Remi ;
Friedrich, Kaspar Andreas ;
Kriegel, Ralf .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (06)
[9]   Catalytic partial oxidation of methane to syngas: review of perovskite catalysts and membrane reactors [J].
Elbadawi, Abdalwadood H. ;
Ge, Lei ;
Li, Zhiheng ;
Liu, Shaomin ;
Wang, Shaobin ;
Zhu, Zhonghua .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 2021, 63 (01) :1-67
[10]   ION AND MIXED CONDUCTING OXIDES AS CATALYSTS [J].
GELLINGS, PJ ;
BOUWMEESTER, HJM .
CATALYSIS TODAY, 1992, 12 (01) :1-105