Schrödinger-Poisson System Involving Potential Vanishing at Infinity and Unbounded Below

被引:0
作者
Correa, Genivaldo P. [1 ]
dos Santos, Gelson C. G. [2 ]
机构
[1] Fed Univ Para, Fac Exact & Technol Sci, Abaetetuba, Brazil
[2] Fed Univ Para, Inst Exact & Nat Sci, Belem, Brazil
关键词
Schr & ouml; dinger-Poisson system; variational methods; Mountain Pass Theorem; nontrivial solution; supercritical exponents; vanishing potential; sign-changing potential; SCHRODINGER-POISSON SYSTEM; GROUND-STATE SOLUTIONS; THOMAS-FERMI; MAXWELL SYSTEM; SOLITARY WAVES; EQUATIONS; ATOMS; EXISTENCE; HARTREE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article concerns the following class of system { -triangle u + V(x)u + & ell;(x)phi u = f(u) + lambda|u|(q-2 )u in R-3, -triangle phi = & ell;(x)u(2) in R-3, u, phi is an element of D-1,D-2(R-3), u,phi >= 0 in R-3, where lambda >= 0 and q >= 2(& lowast;) = 6 is the critical Sobolev exponent in dimension 3, the nonlinearity f : R -> R is superlinear and has sub critical growth, V, & ell; : R-3 -> R are measurable functions with & ell; is an element of L-2(R-3), the potential V can change sign in R-3 and vanish at infinity, that is, V (x)-> 0 as |x|->infinity. Our approach is based on variational method combined with Benci-Fortunato's reduction argument [Topol. Methods Nonlinear Anal. 11 (1998) 283-293], Del Pino-Felmer's penalization technique [Calc. Var. Partial Diff. Equations 4 (1996) 121-137] and L-infinity-estimate.
引用
收藏
页码:1117 / 1134
页数:18
相关论文
共 41 条
[1]   On a planar non-autonomous Schrodinger-Poisson system involving exponential critical growth [J].
Albuquerque, F. S. ;
Carvalho, J. L. ;
Figueiredo, G. M. ;
Medeiros, E. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
[2]   Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Yang, Minbo .
ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (04) :331-345
[3]   Existence of solutions for a class of elliptic equations in RN with vanishing potentials [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (10) :5555-5568
[4]   Multiple bound states for the Schrodinger-Poisson problem [J].
Ambrosetti, Antonio ;
Ruiz, David .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (03) :391-404
[5]   On Schrodinger-Poisson Systems [J].
Ambrosetti, Antonio .
MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) :257-274
[6]   Concentration and compactness in nonlinear Schrodinger-Poisson system with a general nonlinearity [J].
Azzollini, A. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (07) :1746-1763
[7]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[8]  
Azzollini A, 2010, TOPOL METHOD NONL AN, V35, P33
[9]   Positive and nodal solutions for a nonlinear Schrodinger-Poisson system with sign-changing potentials [J].
Batista, Alex M. ;
Furtado, Marcelo F. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 39 :142-156
[10]   Solitons and the electromagnetic field [J].
Benci, V ;
Fortunato, D ;
Masiello, A ;
Pisani, L .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (01) :73-102