MXenes as advanced electrode materials for sustainable energy storage and conversion applications: A review

被引:0
|
作者
Javed, Muhammad Sufyan [1 ]
Ahmad, Awais [2 ]
Hussain, Iftikhar [3 ]
Shah, Syed Shoaib Ahmad [4 ]
Ismail, Mostafa A. [5 ]
Akkinepally, Bhargav [6 ]
Wang, Xin [1 ]
机构
[1] Zhejiang Wanli Univ, Inst Carbon Neutral, Ningbo 315100, Peoples R China
[2] Univ Lahore, Dept Chem, Lahore 54590, Pakistan
[3] City Univ Hong Kong, Dept Mech Engn, Kowloon, 83 Tat Chee Ave, Hong Kong, Peoples R China
[4] Natl Univ Sci & Technol, Sch Nat Sci, Dept Chem, Islamabad 44000, Pakistan
[5] King Saud Univ, Coll Sci, Dept Chem, POB 2455, Riyadh 11451, Saudi Arabia
[6] Yeungnam Univ, Sch Mech Engn, Gyoungsan 38541, South Korea
关键词
MXenes; 2D nanosheets; Energy conversion and storage devices; Supercapacitors; Batteris; fuel cells; catalysis; CARBIDE MXENE; HYDROGEN EVOLUTION; TITANIUM CARBIDE; TI3C2TX MXENE; ION STORAGE; PHASE; ANODE; ELECTROCATALYST; EXFOLIATION; PERFORMANCE;
D O I
10.1016/j.susmat.2024.e01230
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Metal carbides or nitrides known as MXenes have recently emerged as excellent electrode materials for sustainable energy devices such as batteries, supercapacitors (SCs), fuel and solar cells. Their metallic conductivity, good hydrophilic nature, and served as excellent templates for growing other materials with tunable properties make MXenes as highly promising options for a range of energy conversion and storage applications. This review summarizes the current advancements in energy conversion and storage utilizing two-dimensional (2D) MXene as electrode materials. The foundational principles of energy conversion and storage systems are initially explored. The subsequent sections will concentrate on the synthesis methods of MXenes, highlighting their distinctive properties. Next, a comprehensive examination of the current advancements in MXene-based electrode materials for energy storage devices, including SCs and various types of metal ion batteries, is conducted. Additionally, the mechanisms underlying energy storage, common challenges faced, and potential strategies for addressing these issues through the use of MXene are examined with illustrative examples. Furthermore, recent advancements emphasized MXene's use in energy conversion devices, including solar cells, fuel cells, and catalysis. The discussion concludes with an exploration of the potential applications of MXene-based devices in energy conversion and storage applications for sustainable technologies.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Novel Materials and Advanced Characterization for Energy Storage and Conversion
    Li, Qingyuan
    Fang, Jen-Hung
    Li, Wenyuan
    Liu, Xingbo
    ENERGIES, 2022, 15 (20)
  • [42] Editorial for advanced energy storage and conversion materials and technologies
    Ma, Jian-Min
    Li, Yu-Tao
    RARE METALS, 2021, 40 (02) : 246 - 248
  • [43] Layer Structured Materials for Advanced Energy Storage and Conversion
    Guo, Yanpeng
    Wei, Yaqing
    Li, Huiqiao
    Zhai, Tianyou
    SMALL, 2017, 13 (45)
  • [44] Advanced Materials for Electrochemical Energy Conversion and Storage Devices
    Santos, Diogo M. F.
    Sljukic, Biljana
    MATERIALS, 2021, 14 (24)
  • [45] Advanced materials and novel approaches for energy conversion and storage
    Hu, Yun Hang H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [46] Nanostructured materials for advanced energy conversion and storage devices
    Antonino Salvatore Aricò
    Peter Bruce
    Bruno Scrosati
    Jean-Marie Tarascon
    Walter van Schalkwijk
    Nature Materials, 2005, 4 : 366 - 377
  • [47] Editorial for advanced energy storage and conversion materials and technologies
    Jian-Min Ma
    Yu-Tao Li
    RareMetals, 2021, 40 (02) : 246 - 248
  • [48] Editorial for advanced energy storage and conversion materials and technologies
    Jian-Min Ma
    Yu-Tao Li
    Rare Metals, 2021, 40 : 246 - 248
  • [49] Editorial for advanced energy storage and conversion materials and technologies
    Jian-Min Ma
    Yu-Tao Li
    Rare Metals, 2020, 39 : 967 - 969
  • [50] Editorial for advanced energy storage and conversion materials and technologies
    Ma, Jian-Min
    Li, Yu-Tao
    RARE METALS, 2020, 39 (09) : 967 - 969