Cross-Conditions Fault Diagnosis of Rolling Bearing Based on Transitional Domain Adversarial Network

被引:1
|
作者
Jiang, Yonghua [1 ,2 ]
He, Yian [3 ]
Shi, Zhuoqi [4 ]
Jiang, Hongkui [1 ]
Dong, Zhilin [3 ]
Sun, Jianfeng [3 ]
Tang, Chao [1 ]
Jiao, Weidong [3 ]
机构
[1] Zhejiang Normal Univ, Xingzhi Coll, Lanxi 321100, Peoples R China
[2] Lanxi Magnesium Mat Res Inst, Lanxi 321100, Peoples R China
[3] Zhejiang Normal Univ, Key Lab Intelligent Operat & Maintenance Technol &, Jinhua 321004, Peoples R China
[4] Hangzhou Zhongce Vocat Sch, Hangzhou 310020, Peoples R China
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
Feature extraction; Sensors; Data models; Fault diagnosis; Generative adversarial networks; Data mining; Adversarial machine learning; Adaptation models; Training; Time-domain analysis; Cross-conditions; domain adversarial; rolling bearing fault diagnosis; unsupervised domain adaptation (UDA); RESERVE-UNIVERSITY DATA;
D O I
10.1109/JSEN.2024.3496693
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To address the poor performance of traditional rolling bearing fault diagnosis models in cross-condition tasks due to significant feature differences, a transitional domain adversarial network (TDAN) is proposed in this article. This model initially builds a multichannel, multifeature extractor to obtain the frequency domain phase spectrum of vibration signals. It then integrates this data with spectral and time-domain features to extract deep, domain-invariant characteristics from various perspectives. Transition units are also designed to derive both domain and class transitional zones. The domain transitional zone aims to mitigate the loss of certain features caused by forced alignment between source and target domains. Meanwhile, the class transitional zone enhances feature granularity from the perspective of interclass variation, thereby improving class-specific representation, smoothing the adversarial process, and boosting model generalization. Additionally, to address the target-oriented adversarial loss function, a readversarial module is introduced. This process equips the model with the capability to escape local optima and optimize parameters adaptively during training, resulting in stronger robustness and adaptability. Comparative experiments with other unsupervised domain adaptation (UDA) methods on two bearing datasets demonstrate TDAN's effectiveness and superiority in rolling bearing cross-condition fault diagnosis. It also demonstrates the model's potential for application in real industrial scenarios where varying operating conditions lead to differences in vibration signals.
引用
收藏
页码:1978 / 1993
页数:16
相关论文
共 50 条
  • [31] Cross-Domain Open-Set Machinery Fault Diagnosis Based on Adversarial Network With Multiple Auxiliary Classifiers
    Zhu, Jun
    Huang, Cheng-Geng
    Shen, Changqing
    Shen, Yongjun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (11) : 8077 - 8086
  • [32] Cross-domain open-set rolling bearing fault diagnosis based on feature improvement adversarial network under noise condition
    Wang, Haomiao
    Li, Yibin
    Jiang, Mingshun
    Zhang, Faye
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (02) : 5073 - 5085
  • [33] Collaborative and Conditional Deep Adversarial Network for Intelligent Bearing Fault Diagnosis
    Xia, Yi
    Zhang, Chengzhi
    Ye, Qiang
    Lu, Yixiang
    Yang, Runyu
    Wu, Yuhui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [34] Imbalanced Fault Diagnosis of Rolling Bearing Based on Generative Adversarial Network: A Comparative Study
    Mao, Wentao
    Liu, Yamin
    Ding, Ling
    Li, Yuan
    IEEE ACCESS, 2019, 7 : 9515 - 9530
  • [35] Cross working condition bearing fault diagnosis based on the combination of multimodal network and entropy conditional domain adversarial network
    Feng, Yuanpeng
    Liu, Peng
    Du, Yixian
    Jiang, Zhansi
    JOURNAL OF VIBRATION AND CONTROL, 2024, 30 (23-24) : 5375 - 5386
  • [36] An improved multi-channel and multi-scale domain adversarial neural network for fault diagnosis of the rolling bearing
    Jin, Yongze
    Song, Xiaohao
    Yang, Yanxi
    Hei, Xinhong
    Feng, Nan
    Yang, Xubo
    CONTROL ENGINEERING PRACTICE, 2025, 154
  • [37] A Multisource-Multitarget Domain Adaptation Method for Rolling Bearing Fault Diagnosis
    Chen, Yuhang
    Xiao, Lei
    IEEE SENSORS JOURNAL, 2024, 24 (03) : 3406 - 3419
  • [38] A Novel Periodic Cyclic Sparse Network With Entire Domain Adaptation for Deep Transfer Fault Diagnosis of Rolling Bearing
    Xing, Zhan
    Yi, Cai
    Lin, Jianhui
    Zhou, Qiuyang
    IEEE SENSORS JOURNAL, 2023, 23 (12) : 13452 - 13468
  • [39] Simulation-Driven Domain Adaptation for Rolling Element Bearing Fault Diagnosis
    Liu, Chenyu
    Gryllias, Konstantinos
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 5760 - 5770
  • [40] A Hybrid Adversarial Domain Adaptation Network for Bearing Fault Diagnosis Under Varying Working Conditions
    Zhang, Ziyun
    Peng, Lei
    Dai, Guangming
    Wang, Maocai
    Bai, Junfei
    Zhang, Lei
    Li, Jian
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72