Cross-Conditions Fault Diagnosis of Rolling Bearing Based on Transitional Domain Adversarial Network

被引:0
|
作者
Jiang, Yonghua [1 ,2 ]
He, Yian [3 ]
Shi, Zhuoqi [4 ]
Jiang, Hongkui [1 ]
Dong, Zhilin [3 ]
Sun, Jianfeng [3 ]
Tang, Chao [1 ]
Jiao, Weidong [3 ]
机构
[1] Zhejiang Normal Univ, Xingzhi Coll, Lanxi 321100, Peoples R China
[2] Lanxi Magnesium Mat Res Inst, Lanxi 321100, Peoples R China
[3] Zhejiang Normal Univ, Key Lab Intelligent Operat & Maintenance Technol &, Jinhua 321004, Peoples R China
[4] Hangzhou Zhongce Vocat Sch, Hangzhou 310020, Peoples R China
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
Feature extraction; Sensors; Data models; Fault diagnosis; Generative adversarial networks; Data mining; Adversarial machine learning; Adaptation models; Training; Time-domain analysis; Cross-conditions; domain adversarial; rolling bearing fault diagnosis; unsupervised domain adaptation (UDA); RESERVE-UNIVERSITY DATA;
D O I
10.1109/JSEN.2024.3496693
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To address the poor performance of traditional rolling bearing fault diagnosis models in cross-condition tasks due to significant feature differences, a transitional domain adversarial network (TDAN) is proposed in this article. This model initially builds a multichannel, multifeature extractor to obtain the frequency domain phase spectrum of vibration signals. It then integrates this data with spectral and time-domain features to extract deep, domain-invariant characteristics from various perspectives. Transition units are also designed to derive both domain and class transitional zones. The domain transitional zone aims to mitigate the loss of certain features caused by forced alignment between source and target domains. Meanwhile, the class transitional zone enhances feature granularity from the perspective of interclass variation, thereby improving class-specific representation, smoothing the adversarial process, and boosting model generalization. Additionally, to address the target-oriented adversarial loss function, a readversarial module is introduced. This process equips the model with the capability to escape local optima and optimize parameters adaptively during training, resulting in stronger robustness and adaptability. Comparative experiments with other unsupervised domain adaptation (UDA) methods on two bearing datasets demonstrate TDAN's effectiveness and superiority in rolling bearing cross-condition fault diagnosis. It also demonstrates the model's potential for application in real industrial scenarios where varying operating conditions lead to differences in vibration signals.
引用
收藏
页码:1978 / 1993
页数:16
相关论文
共 50 条
  • [21] A novel fault diagnosis model of rolling bearing under variable working conditions based on attention mechanism and domain adversarial neural network
    Zhiping Liu
    Peng Zhang
    Yannan Yu
    Mengzhen Li
    Zhuo Zeng
    Journal of Mechanical Science and Technology, 2024, 38 : 1101 - 1111
  • [22] Fault Diagnosis in Wind Turbines Based on Weighted Joint Domain Adversarial Network Under Various Working Conditions
    Qi, Huaiyuan
    Han, Yinghua
    Tuo, Siwei
    Zhao, Qiang
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 15165 - 15175
  • [23] A novel fault diagnosis model of rolling bearing under variable working conditions based on attention mechanism and domain adversarial neural network
    Liu, Zhiping
    Zhang, Peng
    Yu, Yannan
    Li, Mengzhen
    Zeng, Zhuo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2024, 38 (03) : 1101 - 1111
  • [24] A Domain Adversarial Transfer Model with Inception and Attention Network for Rolling Bearing Fault Diagnosis Under Variable Operating Conditions
    Shang, Zhiwu
    Zhang, Jie
    Li, Wanxiang
    Qian, Shiqi
    Gao, Maosheng
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (01) : 1 - 17
  • [25] A Domain Adversarial Transfer Model with Inception and Attention Network for Rolling Bearing Fault Diagnosis Under Variable Operating Conditions
    Zhiwu Shang
    Jie Zhang
    Wanxiang Li
    Shiqi Qian
    Maosheng Gao
    Journal of Vibration Engineering & Technologies, 2024, 12 : 1 - 17
  • [26] Intelligent fault diagnosis method of rolling bearing based on multi-source domain fast adversarial network
    She, Daoming
    Zhang, Hongfei
    Wang, Hu
    Yan, Xiaoan
    Chen, Jin
    Li, Yaoming
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (05)
  • [27] A Fine-Grained Adversarial Network Method for Cross-Domain Industrial Fault Diagnosis
    Chai, Zheng
    Zhao, Chunhui
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (03) : 1432 - 1442
  • [28] Self-Supervised Learning via Domain Adaptive Adversarial Clustering for Cross-Domain Chiller Fault Diagnosis
    Han, Huazheng
    Gao, Xuejin
    Han, Huayun
    Gao, Huihui
    Qi, Yongsheng
    Jiang, Kexin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [29] An Intelligent Fault Diagnosis for Rolling Bearing Based on Adversarial Semi-Supervised Method
    Zhang, Yongchao
    Ren, Zhaohui
    Zhou, Shihua
    IEEE ACCESS, 2020, 8 : 149868 - 149877
  • [30] Cross-Domain Open-Set Machinery Fault Diagnosis Based on Adversarial Network With Multiple Auxiliary Classifiers
    Zhu, Jun
    Huang, Cheng-Geng
    Shen, Changqing
    Shen, Yongjun
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (11) : 8077 - 8086