Equal area partitions of the sphere with diameter bounds, via optimal transport

被引:0
作者
Kitagawa, Jun [1 ]
Takatsu, Asuka [2 ,3 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI USA
[2] Tokyo Metropolitan Univ, Dept Math Sci, Tokyo 1920397, Japan
[3] RIKEN Ctr Adv Intelligence Project AIP, Tokyo, Japan
基金
美国国家科学基金会;
关键词
WASSERSTEIN DISTANCE; CONVERGENCE; POINTS; MAPS;
D O I
10.1112/blms.70045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence of equal area partitions of the unit sphere via optimal transport methods, accompanied by diameter bounds written in terms of Monge-Kantorovich distances. This can be used to obtain bounds on the expectation of the maximum diameter of partition sets, when points are uniformly sampled from the sphere. An application to the computation of sliced Monge-Kantorovich distances is also presented.
引用
收藏
页数:15
相关论文
共 21 条
  • [1] SUM OF DISTANCES BETWEEN POINTS ON A SPHERE
    ALEXANDER, R
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (3-4): : 443 - 448
  • [2] Strong equivalence between metrics of Wasserstein type
    Bayraktar, Erhan
    Guoi, Gaoyue
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2021, 26
  • [3] Existence and uniqueness of optimal transport maps
    Cavalletti, Fabio
    Huesmann, Martin
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (06): : 1367 - 1377
  • [4] Max-Sliced Wasserstein Distance and its use for GANs
    Deshpande, Ishan
    Hu, Yuan-Ting
    Sun, Ruoyu
    Pyrros, Ayis
    Siddiqui, Nasir
    Koyejo, Sanmi
    Zhao, Zhizhen
    Forsyth, David
    Schwing, Alexander
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10640 - 10648
  • [5] Optimal transportation on non-compact manifolds
    Fathi, Albert
    Figalli, Alessio
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2010, 175 (01) : 1 - 59
  • [6] On the optimality of the random hyperplane rounding technique for MAX CUT
    Feige, U
    Schechtman, G
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (03) : 403 - 440
  • [7] Fejes Tth L., 1956, Acta Math. Acad. Sci. Hungar, V7, P397
  • [8] On the rate of convergence in Wasserstein distance of the empirical measure
    Fournier, Nicolas
    Guillin, Arnaud
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2015, 162 (3-4) : 707 - 738
  • [9] Diameter Bounded Equal Measure Partitions of Ahlfors Regular Metric Measure Spaces
    Gigante, Giacomo
    Leopardi, Paul
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 57 (02) : 419 - 430
  • [10] L∞ estimates in optimal mass transportation
    Jylha, Heikki
    Rajala, Tapio
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (11) : 4297 - 4321