The Free Boundary Value Problem of α-Harmonic Maps Flow

被引:0
作者
Ai, Wanjun [1 ]
Wang, Jun [2 ]
Zhu, Miaomiao [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, 2 Tiansheng RD, Chongqing 400715, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, 800 Dongchuan RD, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
alpha-Harmonic map flow; Free boundary; Existence; HEAT-FLOW; EVOLUTION; MAPPINGS;
D O I
10.1007/s40304-024-00399-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the alpha-harmonic map flow with free boundary for the Sacks-Uhlenbeck functional on a compact Riemann surface with smooth boundary and prove that thisflow exists globally for smooth initial data and converges to an alpha-harmonic map with free boundary as t ->infinity
引用
收藏
页数:17
相关论文
共 50 条
[41]   CONVERGENCE OF A LATTICE NUMERICAL METHOD FOR A BOUNDARY-VALUE PROBLEM WITH FREE BOUNDARY AND NONLINEAR NEUMANN BOUNDARY CONDITIONS [J].
Chernov, I. A. .
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2009, 35 :40-56
[42]   Convexity of the free boundary for an axially symmetric rotational cavity flow problem [J].
Zhang, Fan .
JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (07)
[43]   A FREE BOUNDARY PROBLEM FOR SYSTEMS (THE SYMMETRIC REGIME) [J].
EL Hajj, Layan ;
Shahgholian, Henrik .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, :1280-1295
[44]   A free boundary problem related to thermal insulation [J].
Caffarelli, Luis A. ;
Kriventsov, Dennis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2016, 41 (07) :1149-1182
[45]   A New Conformal Heat Flow of Harmonic Maps [J].
Woongbae Park .
The Journal of Geometric Analysis, 2023, 33
[46]   EXISTENCE FOR A FREE BOUNDARY PROBLEM IN GROUND FREEZING [J].
GUAN ZHICHENG * WANG XUJIA * .
Chinese Annals of Mathematics, 1998, (01) :97-112
[47]   A free boundary problem modelling the electrolysis of aluminium [J].
Chipot, M ;
Muñiz, MC .
APPLIED MATHEMATICS AND OPTIMIZATION, 2003, 47 (03) :231-252
[48]   Existence for a free boundary problem in ground freezing [J].
Guan, ZC ;
Wang, XJ .
CHINESE ANNALS OF MATHEMATICS SERIES B, 1998, 19 (01) :97-112
[49]   Nonuniqueness for the Heat Flow¶of Harmonic Maps on the Disk [J].
Michiel Bertsch Dal Passo ;
Roberta van der Hout ;
Rein undefined .
Archive for Rational Mechanics and Analysis, 2002, 161 :93-112
[50]   NONUNIQUENESS FOR THE HEAT-FLOW OF HARMONIC MAPS [J].
CORON, JM .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (04) :335-344