The Free Boundary Value Problem of α-Harmonic Maps Flow

被引:0
作者
Ai, Wanjun [1 ]
Wang, Jun [2 ]
Zhu, Miaomiao [2 ]
机构
[1] Southwest Univ, Sch Math & Stat, 2 Tiansheng RD, Chongqing 400715, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Math Sci, 800 Dongchuan RD, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
alpha-Harmonic map flow; Free boundary; Existence; HEAT-FLOW; EVOLUTION; MAPPINGS;
D O I
10.1007/s40304-024-00399-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the alpha-harmonic map flow with free boundary for the Sacks-Uhlenbeck functional on a compact Riemann surface with smooth boundary and prove that thisflow exists globally for smooth initial data and converges to an alpha-harmonic map with free boundary as t ->infinity
引用
收藏
页数:17
相关论文
共 50 条
[31]   Existence for VT-harmonic maps from compact manifolds with boundary [J].
Cao, Xiangzhi ;
Chen, Qun .
SCIENCE CHINA-MATHEMATICS, 2022, 65 (11) :2371-2378
[32]   A free boundary problem for a fluid flow in a heterogeneous porous medium [J].
A. Lyaghfouri .
Annali dell’Università di Ferrara, 2003, 49 (1) :209-262
[33]   Uniqueness of Dirac-harmonic maps from a compact surface with boundary [J].
Jost, Juergen ;
Zhu, Jingyong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 357 :388-411
[34]   Approaches to solving a free boundary porous medium flow problem [J].
Zhang, J ;
Jiang, B ;
Bruch, JC .
FLUID STRUCTURE INTERACTION AND MOVING BOUNDARY PROBLEMS, 2005, 84 :551-560
[35]   The Spin-Coating Process: Analysis of the Free Boundary Value Problem [J].
Denk, Robert ;
Geissert, Matthias ;
Hieber, Matthias ;
Saal, Juergen ;
Sawada, Okihiro .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (07) :1145-1192
[36]   SOLVABILITY OF THE FREE BOUNDARY VALUE PROBLEM OF THE NAVIER-STOKES EQUATIONS [J].
Bae, Hantaek .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (03) :769-801
[37]   Heat flow for harmonic maps from graphs into Riemannian manifolds [J].
Baird, Paul ;
Fardoun, Ali ;
Regbaoui, Rachid .
JOURNAL OF GEOMETRY AND PHYSICS, 2022, 176
[38]   The Initial Boundary Value Problem of a Parabolic System [J].
Ou, Qitong ;
Zhan, Huashui .
2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2016), 2016, :198-203
[39]   A well-posed free boundary value problem for a hyperbolic equation with Dirichlet boundary conditions [J].
Matthews, JV ;
Schaeffer, DG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) :256-271
[40]   Free boundary value problem for a model of inviscid liquid-gas two-phase flow with radial symmetry [J].
Dong, Jianwei .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (11)