Error estimate and superconvergence of a high-accuracy difference scheme for 2D heat equation with nonlocal boundary conditions

被引:0
|
作者
Zhou, Liping [1 ]
Yan, Yumei [1 ]
Liu, Ying [2 ]
机构
[1] Hunan Univ Sci & Engn, Coll Sci, Yongzhou 425199, Peoples R China
[2] Hunan Agr Univ, Coll Informat & Intelligence, Changsha 410128, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 10期
基金
中国国家自然科学基金;
关键词
heat equation; nonlocal boundary condition; finite difference scheme; asymptotic optimal error estimate; superconvergence; REACTION-DIFFUSION EQUATIONS; PARABOLIC EQUATIONS; SUBJECT;
D O I
10.3934/math.20241352
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we initially construct an implicit Euler difference scheme for a twodimensional heat problem, incorporating both local and nonlocal boundary conditions. Subsequently, we harness the power of the discrete Fourier transform and develop an innovative transformation technique to rigorously demonstrate that our scheme attains the asymptotic optimal error estimate in the maximum norm. Furthermore, we derive a series of approximation formulas for the partial derivatives of the solution along the two spatial dimensions, meticulously proving that each of these formulations possesses superconvergence properties. Lastly, to validate our theoretical findings, we present two comprehensive numerical experiments, showcasing the efficiency and accuracy of our approach.
引用
收藏
页码:27848 / 27870
页数:23
相关论文
共 50 条
  • [41] On energy preserving consistent boundary conditions for the Yee scheme in 2D
    B. Engquist
    J. Häggblad
    O. Runborg
    BIT Numerical Mathematics, 2012, 52 : 615 - 637
  • [42] Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation
    Zhang, Ya-nan
    Sun, Zhi-zhong
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 59 (01) : 104 - 128
  • [43] A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation
    Wu, Tingting
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 497 - 512
  • [44] An efficient finite difference scheme for the 2D sine-Gordon equation
    Kang, Xiaorong
    Feng, Wenqiang
    Cheng, Kelong
    Guo, Chunxiang
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (06): : 2998 - 3012
  • [45] Error Analysis of a Compact ADI Scheme for the 2D Fractional Subdiffusion Equation
    Ya-nan Zhang
    Zhi-zhong Sun
    Journal of Scientific Computing, 2014, 59 : 104 - 128
  • [46] Construction of a New Implicit Difference Scheme for 2D Boussinesq Paradigm Equation
    Blinkov, Yu A.
    Gerdt, V. P.
    Pankratov, I. A.
    Kotkova, E. A.
    COMPUTER ALGEBRA IN SCIENTIFIC COMPUTING (CASC 2019), 2019, 11661 : 152 - 163
  • [47] An NAD Scheme with Wavenumber Error Optimized for 2D Scalar Wave Equation
    Yang, Guangwen
    Chen, Yushu
    Song, Guojie
    Yang, Yan
    Luo, Caiming
    Jin, Jianhua
    Li, Shiqin
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2016, 106 (01) : 189 - 203
  • [48] Real-Time High-Accuracy 2D Localization with Structured Patterns
    Hostettler, Lukas
    Ozgur, Ayberk
    Lemaignan, Severin
    Dillenbourg, Pierre
    Mondada, Francesco
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2016, : 4536 - 4543
  • [49] Computation of discrete transparent boundary conditions for the 2D Helmholtz equation
    F. Schmidt
    Optical and Quantum Electronics, 1998, 30 : 427 - 441