Attention Assisted Patch-Wise CNN for the Segmentation of Fluids from the Retinal Optical Coherence Tomography Images

被引:1
|
作者
Anoop, B. N. [1 ]
Parida, Saswat [1 ]
Ajith, B. [1 ]
Girish, G. N. [2 ]
Kothari, Abhishek R. [3 ]
Kavitha, Muthu Subash [4 ]
Rajan, Jeny [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Comp Sci & Engn, Mangalore, India
[2] Indian Inst Informat Technol Sri City, Dept Comp Sci & Engn, Chittoor, India
[3] Pink City Eye & Retina Ctr, Jaipur, Rajasthan, India
[4] Nagasaki Univ, Sch Informat & Data Sci, Nagasaki, Japan
来源
PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2021 | 2024年 / 13102卷
关键词
Retinal cysts; Image Segmentation; Deep learning; Optical Coherence Tomography; Attention module; Multi-scale features; LAYER; OCT;
D O I
10.1007/978-3-031-12700-7_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical Coherence Tomography (OCT) is an important imaging modality in ophthalmology to visualize the abnormalities present in the retina. One of the major reasons for blindness is the accumulation of fluids in the various layers of the retina called retinal cysts. Accurate estimation of the type of cyst and its volume is important for effective treatment planning. In this paper, we propose attention assisted convolutional neural network-based architecture to detect and quantify three types of retinal cysts namely the intra-retinal cyst, subretinal cyst and pigmented epithelial detachment from the OCT images of the human retina. The proposed architecture has an encoder-decoder structure with an attention and a multi-scale module. The qualitative and quantitative performance of the model is evaluated on the publicly available RETOUCH retinal OCT fluid detection challenge data set. The proposed model outperforms the state-of-the-art methods in terms of precision, recall, and dice coefficient. Furthermore, the proposed model is computationally efficient due to its less number of model parameters.
引用
收藏
页码:213 / 223
页数:11
相关论文
共 50 条
  • [21] CTS-Net: A Segmentation Network for Glaucoma Optical Coherence Tomography Retinal Layer Images
    Xue, Songfeng
    Wang, Haoran
    Guo, Xinyu
    Sun, Mingyang
    Song, Kaiwen
    Shao, Yanbin
    Zhang, Hongwei
    Zhang, Tianyu
    BIOENGINEERING-BASEL, 2023, 10 (02):
  • [22] Validation of Optical Coherence Tomography Retinal Segmentation in Neurodegenerative Disease
    Wong, Bryan M.
    Cheng, Richard W.
    Mandelcorn, Efrem D.
    Margolin, Edward
    El-Defrawy, Sherif
    Yan, Peng
    Santiago, Anna T.
    Leontieva, Elena
    Lou, Wendy
    Hatch, Wendy
    Hudso, Christopher
    Bartha, Robert
    Black, Sandra E.
    Borrie, Michael
    Corbett, Dale
    Finger, Elizabeth
    Freedman, Morris
    Greenberg, Barry
    Grimes, David A.
    Hegele, Robert A.
    Hudson, Christopher
    Lang, Anthony E.
    Masellis, Mario
    McIlroy, William E.
    McLaughlin, Paula M.
    Montero-Odasso, Manuel
    Munoz, David G.
    Munoz, Douglas P.
    Orange, J. B.
    Strong, Michael J.
    Strother, Stephen C.
    Swartz, Richard H.
    Symons, Sean
    Tartaglia, Maria Carmela
    Troyer, Angela
    Zinman, Lorne
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2019, 8 (05):
  • [23] Loss-modified transformer-based U-Net for accurate segmentation of fluids in optical coherence tomography images of retinal diseases
    Darooei, Reza
    Nazari, Milad
    Kafieh, Rahle
    Rabbani, Hossein
    JOURNAL OF MEDICAL SIGNALS & SENSORS, 2023, 13 (04): : 253 - 260
  • [24] A Review of Machine Learning Algorithms for Retinal Cyst Segmentation on Optical Coherence Tomography
    Wei, Xing
    Sui, Ruifang
    SENSORS, 2023, 23 (06)
  • [25] Shortest path with backtracking based automatic layer segmentation in pathological retinal optical coherence tomography images
    Xiaoming Liu
    Dong Liu
    Tianyu Fu
    Zhifang Pan
    Wei Hu
    Kai Zhang
    Multimedia Tools and Applications, 2019, 78 : 15817 - 15838
  • [26] Shortest path with backtracking based automatic layer segmentation in pathological retinal optical coherence tomography images
    Liu, Xiaoming
    Liu, Dong
    Fu, Tianyu
    Pan, Zhifang
    Hu, Wei
    Zhang, Kai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (12) : 15817 - 15838
  • [27] Retinal Boundary Segmentation in Stargardt Disease Optical Coherence Tomography Images Using Automated Deep Learning
    Kugelman, Jason
    Alonso-Caneiro, David
    Chen, Yi
    Arunachalam, Sukanya
    Huang, Di
    Vallis, Natasha
    Collins, Michael J.
    Chen, Fred K.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2020, 9 (11): : 1 - 13
  • [28] Automatic Segmentation of Macular Holes in Optical Coherence Tomography Images
    Mendes, Odilon L. C.
    Lucena, Daniel R.
    Lucena, Abrahao R.
    Cavalcante, Tarique S.
    Albuquerque, Victor Hugo C. De
    Altaf, Meteb
    Hassan, Mohammad Mehedi
    Alexandria, Auzuir R.
    IEEE ACCESS, 2021, 9 (09): : 96487 - 96500
  • [29] Retinal layer and fluid segmentation in optical coherence tomography images using a hierarchical framework
    Melo, Tania
    Carneiro, Angela
    Campilho, Aurelio
    Mendonca, Ana Maria
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (01)
  • [30] Automatic Segmentation of Diffuse Retinal Thickening Edemas Using Optical Coherence Tomography Images
    Samagaio, Gabriela
    de Moura, Joaquim
    Novo, Jorge
    Ortega, Marcos
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 472 - 481