EEG-based anxiety emotion classification using an optimized convolutional neural network and transformer

被引:0
作者
Li, Qiang [1 ]
Sun, Yuhan [1 ]
Xie, Yuting [1 ]
Zhou, Yan [1 ]
机构
[1] Southwest Univ Sci & Technol, Sch Informat & Control Engn, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural network; Transformer; EEG; Anxiety classification; Deep learning; DEPRESSION; DISORDER;
D O I
10.1007/s11760-025-04067-x
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Anxiety disorder is a prevalent mental health problem across all age groups. Although deep learning has shown remarkable success in numerous medical domains, the classification of anxiety emotion using deep learning remains challenging and underexplored. In this paper, we propose a hybrid model based on an optimized convolutional neural network and Transformer, named MSDSTT. The optimized convolutional neural network extracts local multi-scale spatio-temporal features from EEG signals. The temporal convolutional network(TCN)-Transformer parallel module is used further to extract the deeply local and global spatio-temporal features of EEG signals. Ablation studies have validated the capabilities of the proposed optimized modules to enhance the model's feature representation capabilities. The experimental results show that the proposed MSDSTT model achieves an accuracy of 87.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} and 86.9%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} on the binary classification and quad classification tasks of the DASPS dataset, respectively, indicating its superior performance in anxiety emotion classification compared to other methods.
引用
收藏
页数:9
相关论文
共 34 条
[1]   Classification of emotions using EEG activity associated with different areas of the brain [J].
Agarwal, Rupal ;
Andujar, Marvin ;
Canavan, Shaun .
PATTERN RECOGNITION LETTERS, 2022, 162 :71-80
[2]   Review of EEG, ERP, and Brain Connectivity Estimators as Predictive Biomarkers of Social Anxiety Disorder [J].
Al-Ezzi, Abdulhakim ;
Kamel, Nidal ;
Faye, Ibrahima ;
Gunaseli, Esther .
FRONTIERS IN PSYCHOLOGY, 2020, 11
[3]   Deep Learning with ConvNet Predicts Imagery Tasks Through EEG [J].
Altan, Gokhan ;
Yayik, Apdullah ;
Kutlu, Yakup .
NEURAL PROCESSING LETTERS, 2021, 53 (04) :2917-2932
[4]   Psychological stimulation for anxious states detection based on EEG-related features [J].
Baghdadi, Asma ;
Aribi, Yassine ;
Fourati, Rahma ;
Halouani, Najla ;
Siarry, Patrick ;
Alimi, Adel .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (08) :8519-8533
[5]   Automated anxiety detection using probabilistic binary pattern with ECG signals [J].
Baygin, Mehmet ;
Barua, Prabal Datta ;
Dogan, Sengul ;
Tuncer, Turker ;
Hong, Tan Jen ;
March, Sonja ;
Tan, Ru-San ;
Molinari, Filippo ;
Acharya, U. Rajendra .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 247
[6]   Detection of mental stress using novel spatio-temporal distribution of brain activations [J].
Chatterjee, Debatri ;
Gavas, Rahul ;
Saha, Sanjoy Kumar .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
[7]   Toward reliable signals decoding for electroencephalogram: A benchmark study to EEGNeX [J].
Chen, Xia ;
Teng, Xiangbin ;
Chen, Han ;
Pan, Yafeng ;
Geyer, Philipp .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
[8]   Safe-level SMOTE method for handling the class imbalanced problem in electroencephalography dataset of adult anxious state [J].
Daud, Syarifah Noor Syakiylla Sayed ;
Sudirman, Rubita ;
Shing, Tee Wee .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 83
[9]   Disrupted functional connectivity in social anxiety disorder: a resting-state fMRI study [J].
Ding, Jurong ;
Chen, Huafu ;
Qiu, Changjian ;
Liao, Wei ;
Warwick, James M. ;
Duan, Xujun ;
Zhang, Wei ;
Gong, Qiyong .
MAGNETIC RESONANCE IMAGING, 2011, 29 (05) :701-711
[10]   MASA-TCN: Multi-Anchor Space-Aware Temporal Convolutional Neural Networks for Continuous and Discrete EEG Emotion Recognition [J].
Ding, Yi ;
Zhang, Su ;
Tang, Chuangao ;
Guan, Cuntai .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) :3953-3964