A hybrid approach for intrusion detection in vehicular networks using feature selection and dimensionality reduction with optimized deep learning

被引:0
作者
Hassan, Fayaz [1 ]
Syed, Zafi Sherhan [1 ]
Memon, Aftab Ahmed [1 ]
Alqahtany, Saad Said [2 ]
Ahmed, Nadeem [1 ]
Al Reshan, Mana Saleh [3 ,4 ]
Asiri, Yousef [5 ]
Shaikh, Asadullah [3 ,4 ]
机构
[1] Mehran Univ Engn & Technol, Dept Telecommun Engn, Jamshoro, Pakistan
[2] Islamic Univ Madinah, Fac Comp & Informat Syst, Madinah, Saudi Arabia
[3] Najran Univ, Dept Informat Syst, Coll Comp Sci & Informat Syst, Najran, Saudi Arabia
[4] Najran Univ, Coll Comp Sci & Informat Syst, Emerging Technol Res Lab ETRL, Najran, Saudi Arabia
[5] Najran Univ, Dept Comp Sci, Coll Comp Sci & Informat Syst, Najran, Saudi Arabia
来源
PLOS ONE | 2025年 / 20卷 / 02期
关键词
ATTACKS; MODEL;
D O I
10.1371/journal.pone.0312752
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Autonomous transportation systems have the potential to greatly impact the way we travel. A vital aspect of these systems is their connectivity, facilitated by intelligent transport applications. However, the safety ensured by the vehicular network can be easily compromised by malicious traffic with the exponential growth of IoT devices. One aspect is malicious traffic identification in Vehicular networks. We proposed a hybrid approach uses automated feature engineering via correlation-based feature selection (CFS) and principal component analysis (PCA)-based dimensionality reduction to reduce feature matrix size before a series of dense layers are used for classification. The intended use of CFS and PCA in the machine learning pipeline serves two folds benefit, first is that the resultant feature matrix contains attributes that are most useful for recognizing malicious traffic, and second that after CFS and PCA, the feature matrix has a smaller dimensionality which in turn means that smaller number of weights need to be trained for the dense layers (connections are required for the dense layers) which resulting in smaller model size. Furthermore, we show the impact of post-training model weight quantization to further reduce the model size. Results demonstrate the effectiveness of feature engineering which improves the classification f1score from 96.48% to 98.43%. It also reduces the model size from 28.09 KB to 20.34 KB thus optimizing the model in terms of both classification performance and model size. Post-training quantization further optimizes the model size to 9 KB. The experimental results using CICIDS2017 dataset demonstrate that proposed hybrid model performs well not only in terms of classification performance but also yields trained models that have a low parameter count and model size. Thus, the proposed low-complexity models can be used for intrusion detection in VANET scenario.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] A deep learning-based intrusion detection system for in-vehicle networks
    Alqahtani, Hamed
    Kumar, Gulshan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [42] Deep Q-Learning Based Reinforcement Learning Approach for Network Intrusion Detection
    Alavizadeh, Hooman
    Alavizadeh, Hootan
    Jang-Jaccard, Julian
    COMPUTERS, 2022, 11 (03)
  • [43] Deep learning based short term load forecasting with hybrid feature selection*
    Subbiah, Siva Sankari
    Chinnappan, Jayakumar
    ELECTRIC POWER SYSTEMS RESEARCH, 2022, 210
  • [44] Deep learning-based feature extraction and optimizing pattern matching for intrusion detection using finite state machine
    Abbasi, Junaid Shabbir
    Bashir, Faisal
    Qureshi, Kashif Naseer
    ul Islam, Muhammad Najam
    Jeon, Gwanggil
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 92
  • [45] An efficient optimal security system for intrusion detection in cloud computing environment using hybrid deep learning technique
    Mayuranathan, M.
    Saravanan, S. K.
    Muthusenthil, B.
    Samydurai, A.
    ADVANCES IN ENGINEERING SOFTWARE, 2022, 173
  • [46] Enhancing feature selection with GMSMFO: A global optimization algorithm for machine learning with application to intrusion detection
    Hussein, Nazar K.
    Qaraad, Mohammed
    Amjad, Souad
    Farag, M. A.
    Hassan, Saima
    Mirjalili, Seyedali
    Elhosseini, Mostafa A.
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2023, 10 (04) : 1363 - 1389
  • [47] Enhancing IoT intrusion detection through machine learning with AN-SFS: a novel approach to high performing adaptive feature selection
    Walling, Supongmen
    Lodh, Sibesh
    Discover Internet of Things, 2024, 4 (01):
  • [48] An optimized deep learning approach for suicide detection through Arabic tweets
    Baghdadi, Nadiah A.
    Malki, Amer
    Balaha, Hossam Magdy
    AbdulAzeem, Yousry
    Badawy, Mahmoud
    Elhosseini, Mostafa
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [49] Extensive Analysis of Intrusion Detection System Using Deep Learning Techniques
    Patil, Nishit Bhaskar
    Joshi, Shubhalaxmi
    INTELLIGENT SYSTEMS AND APPLICATIONS, ICISA 2022, 2023, 959 : 191 - 205
  • [50] Feature selection and multiple classifier fusion using genetic algorithms in intrusion detection systems
    Ozgur, Atilla
    Erdem, Hamit
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2018, 33 (01): : 75 - 87