CGBi_YOLO: Lightweight Land Target Detection Network

被引:2
作者
Wang, Ruiyang [1 ]
Lu, Siyu [1 ]
Tian, Jiawei [1 ]
Yin, Lirong [2 ]
Wang, Lei [2 ]
Chen, Xiaobing [3 ]
Zheng, Wenfeng [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Automat, Chengdu 610054, Peoples R China
[2] Louisiana State Univ, Dept Geog & Anthropol, Baton Rouge, LA 70803 USA
[3] Louisiana State Univ, Sch Elect & Comp Engn, Baton Rouge, LA 70803 USA
关键词
remote sensing image; object detection; land target detection; deep learning; CGBi_YOLO; lightweight transformation;
D O I
10.3390/land13122060
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Object detection algorithms for optical remote sensing images often face challenges in computational efficiency, particularly when detecting small and densely packed targets. This paper introduces CGBi_YOLO, a novel lightweight land target detection network designed to optimize computational resource utilization while maintaining detection capabilities for small-scale targets. Our approach incorporates an innovative lightweight optimization strategy featuring a new lightweight backbone feature extraction network: CSPGhostNet. This model significantly enhances the detection ability of small objects within optical remote sensing images without increasing computational demands. The efficacy of the proposed model is validated through rigorous experimentation on the DOTA dataset. Compared to the baseline model, CGBi_YOLO achieves a 30% reduction in parameters and a 36% increase in inference speed. The model demonstrates exceptional performance in handling small and densely packed targets within optical remote sensing images, showcasing its potential for real-world applications in fields such as environmental monitoring, urban planning, and disaster management.
引用
收藏
页数:19
相关论文
共 33 条
[1]  
Bochkovskiy A, 2020, Arxiv, DOI [arXiv:2004.10934, 10.48550/arXiv.2004.10934, DOI 10.48550/ARXIV.2004.10934]
[2]   Research on Airplane and Ship Detection of Aerial Remote Sensing Images Based on Convolutional Neural Network [J].
Cao, Changqing ;
Wu, Jin ;
Zeng, Xiaodong ;
Feng, Zhejun ;
Wang, Ting ;
Yan, Xu ;
Wu, Zengyan ;
Wu, Qifan ;
Huang, Ziqiang .
SENSORS, 2020, 20 (17) :1-16
[3]  
Chen PG, 2024, Arxiv, DOI arXiv:2001.04086
[4]  
Howard AG, 2017, Arxiv, DOI [arXiv:1704.04861, 10.48550/arXiv.1704.04861]
[5]   Geospatial Target Detection from High-Resolution Remote-Sensing Images Based on PIIFD Descriptor and Salient Regions [J].
Ghorbani, Fariborz ;
Ebadi, Hamid ;
Sedaghat, Amin .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2019, 47 (05) :879-891
[6]  
Girshick R, 2015, Arxiv, DOI arXiv:1504.08083
[7]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[8]   GhostNet: More Features from Cheap Operations [J].
Han, Kai ;
Wang, Yunhe ;
Tian, Qi ;
Guo, Jianyuan ;
Xu, Chunjing ;
Xu, Chang .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :1577-1586
[9]   Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) :1904-1916
[10]   Searching for MobileNetV3 [J].
Howard, Andrew ;
Sandler, Mark ;
Chu, Grace ;
Chen, Liang-Chieh ;
Chen, Bo ;
Tan, Mingxing ;
Wang, Weijun ;
Zhu, Yukun ;
Pang, Ruoming ;
Vasudevan, Vijay ;
Le, Quoc V. ;
Adam, Hartwig .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1314-1324