Artificial Intelligence-Empowered Spectroscopic Single Molecule Localization Microscopy

被引:2
作者
Hyun, Yoonsuk [1 ]
Kim, Doory [2 ,3 ]
机构
[1] Inha Univ, Dept Math, Incheon 22212, South Korea
[2] Hanyang Univ, Res Inst Convergence Basic Sci, Inst Nano Sci & Technol, Dept Chem, Seoul 04763, South Korea
[3] Hanyang Univ, Res Inst Nat Sci, Seoul 04763, South Korea
来源
SMALL METHODS | 2024年
基金
新加坡国家研究基金会;
关键词
machine learning; neural networks; single-molecule localization microscopy; single-molecule spectroscopy; SUPERRESOLUTION FLUORESCENCE; ELECTRON-MICROSCOPY; DIFFUSIVITY; LIMIT;
D O I
10.1002/smtd.202401654
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spectroscopic single-molecule localization microscopy (SMLM) has revolutionized the visualization and analysis of molecular structures and dynamics at the nanoscale level. The technique of combining high spatial resolution of SMLM with spectral information, enables multicolor super-resolution imaging and provides insights into the local chemical environment of individual molecules. However, spectroscopic SMLM faces significant challenges, including limited spectral resolution and compromised localization precision because of signal splitting and the difficulties in analyzing complex, multidimensional datasets, that limit its application in studying intricate biological systems and materials. The recent integration of artificial intelligence (AI) with spectroscopic SMLM has emerged as a powerful approach for addressing these challenges. Here, it is reviewed how AI-based methods applied to spectroscopic SMLM enhance and expand the capabilities of these applications. Recent advancements in AI-driven data analysis for spectroscopic SMLM, including improved spectral classification, localization precision, and extraction of rich spectral information from unmodified point-spread functions are discussed, further examining their applications in biological studies, materials science, and single-molecule reaction analysis, which highlight how AI provides new insights into molecular behavior and interactions. The AI-empowered approach adds new dimensions of information and provides new opportunities and insights into the nanoscale world of rapidly evolving field of spectroscopic SMLM.
引用
收藏
页数:17
相关论文
共 103 条
  • [1] Arjovsky M, 2017, PR MACH LEARN RES, V70
  • [2] Multiplane and Spectrally-Resolved Single Molecule Localization Microscopy with Industrial Grade CMOS cameras
    Babcock, Hazen P.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [3] The Role of Molecular Dipole Orientation in Single-Molecule Fluorescence Microscopy and Implications for Super-Resolution Imaging
    Backlund, Mikael P.
    Lew, Matthew D.
    Backer, Adam S.
    Sahl, Steffen J.
    Moerner, W. E.
    [J]. CHEMPHYSCHEM, 2014, 15 (04) : 587 - 599
  • [4] Imaging intracellular fluorescent proteins at nanometer resolution
    Betzig, Eric
    Patterson, George H.
    Sougrat, Rachid
    Lindwasser, O. Wolf
    Olenych, Scott
    Bonifacino, Juan S.
    Davidson, Michael W.
    Lippincott-Schwartz, Jennifer
    Hess, Harald F.
    [J]. SCIENCE, 2006, 313 (5793) : 1642 - 1645
  • [5] Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping
    Bongiovanni, Marie N.
    Godet, Julien
    Horrocks, Mathew H.
    Tosatto, Laura
    Carr, Alexander R.
    Wirthensohn, David C.
    Ranasinghe, Rohan T.
    Lee, Ji-Eun
    Ponjavic, Aleks
    Fritz, Joelle V.
    Dobson, Christopher M.
    Klenerman, David
    Lee, Steven F.
    [J]. Nature Communications, 2016, 7
  • [6] Boyd N., 2018, BIORXIV
  • [7] Spectroscopic single-molecule localization microscopy: applications and prospective
    Brenner, Benjamin
    Sun, Cheng
    Raymo, Francisco M.
    Zhang, Hao F. F.
    [J]. NANO CONVERGENCE, 2023, 10 (01)
  • [8] Super-resolution imaging of flat-mounted whole mouse cornea
    Cai, Zhen
    Zhang, Yang
    Zhang, Zheyuan
    Song, Ki-Hee
    Beckmann, Lisa
    Djalilian, Ali
    Sun, Cheng
    Zhang, Hao F.
    [J]. EXPERIMENTAL EYE RESEARCH, 2021, 205
  • [9] Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach
    Chacko, Jenu Varghese
    Zanacchi, Francesca Cella
    Diaspro, Alberto
    [J]. CYTOSKELETON, 2013, 70 (11) : 729 - 740
  • [10] Sub-Diffraction Nano Manipulation Using STED AFM
    Chacko, Jenu Varghese
    Canale, Claudio
    Harke, Benjamin
    Diaspro, Alberto
    [J]. PLOS ONE, 2013, 8 (06):